Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
import google.generativeai as genai
|
8 |
+
from openai import OpenAI
|
9 |
+
from typing import List, Dict, Tuple
|
10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
|
13 |
+
class AGICognitiveSystem:
|
14 |
+
def __init__(self):
|
15 |
+
self.api_keys = {
|
16 |
+
"GEMINI": os.environ.get("GEMINI_API_KEY"),
|
17 |
+
"MISTRAL": os.environ.get("MISTRAL_API_KEY"),
|
18 |
+
"OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
|
19 |
+
"AZURE": os.environ.get("AZURE_API_KEY")
|
20 |
+
}
|
21 |
+
self.validate_keys()
|
22 |
+
|
23 |
+
# Initialize models and cognitive components
|
24 |
+
self.init_models()
|
25 |
+
self.init_cognitive_modules()
|
26 |
+
self.init_knowledge_graph()
|
27 |
+
|
28 |
+
# Initialize sentence transformer for semantic analysis
|
29 |
+
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
30 |
+
|
31 |
+
# Cognitive configuration
|
32 |
+
self.cognitive_config = {
|
33 |
+
"depth": 5, # Levels of recursive reasoning
|
34 |
+
"temperature_strategy": "adaptive",
|
35 |
+
"confidence_threshold": 0.85,
|
36 |
+
"max_retries": 3,
|
37 |
+
"metacognition_interval": 2
|
38 |
+
}
|
39 |
+
|
40 |
+
self.thought_history = []
|
41 |
+
self.cognitive_metrics = {
|
42 |
+
"processing_time": [],
|
43 |
+
"confidence_scores": [],
|
44 |
+
"error_rates": []
|
45 |
+
}
|
46 |
+
|
47 |
+
def validate_keys(self):
|
48 |
+
for key, value in self.api_keys.items():
|
49 |
+
if not value:
|
50 |
+
raise ValueError(f"Missing API key: {key}")
|
51 |
+
|
52 |
+
def init_models(self):
|
53 |
+
"""Initialize all AI models with specialized roles"""
|
54 |
+
# Google Gemini
|
55 |
+
genai.configure(api_key=self.api_keys["GEMINI"])
|
56 |
+
self.gemini = genai.GenerativeModel(
|
57 |
+
"gemini-2.0-pro-exp-02-05",
|
58 |
+
generation_config={"temperature": 0.5, "max_output_tokens": 8192}
|
59 |
+
)
|
60 |
+
|
61 |
+
# Azure GPT-4o
|
62 |
+
self.gpt4o = OpenAI(
|
63 |
+
base_url="https://models.inference.ai.azure.com",
|
64 |
+
api_key=self.api_keys["AZURE"]
|
65 |
+
)
|
66 |
+
|
67 |
+
# Model registry with specialized roles
|
68 |
+
self.model_registry = {
|
69 |
+
"intuition": "mistral-large-latest",
|
70 |
+
"analysis": "gpt-4o",
|
71 |
+
"critique": "meta-llama/llama-3.3-70b-instruct:free",
|
72 |
+
"creativity": "gemini-2.0-pro-exp-02-05",
|
73 |
+
"validation": "deepseek/deepseek-chat:free",
|
74 |
+
"metacognition": "gpt-4o",
|
75 |
+
"emotional_intelligence": "qwen/qwen-vl-plus:free"
|
76 |
+
}
|
77 |
+
|
78 |
+
def init_cognitive_modules(self):
|
79 |
+
"""Initialize specialized cognitive processors"""
|
80 |
+
self.modules = {
|
81 |
+
"working_memory": [],
|
82 |
+
"long_term_memory": [],
|
83 |
+
"emotional_context": {"valence": 0.5, "arousal": 0.5},
|
84 |
+
"error_correction": [],
|
85 |
+
"metacognition_stack": []
|
86 |
+
}
|
87 |
+
|
88 |
+
def init_knowledge_graph(self):
|
89 |
+
"""Initialize semantic knowledge network"""
|
90 |
+
self.knowledge_graph = {
|
91 |
+
"nodes": [],
|
92 |
+
"edges": [],
|
93 |
+
"embeddings": np.array([])
|
94 |
+
}
|
95 |
+
|
96 |
+
def cognitive_flow(self, query: str) -> Tuple[str, dict]:
|
97 |
+
"""Multi-layered cognitive processing pipeline"""
|
98 |
+
try:
|
99 |
+
# Stage 1: Perception & Contextualization
|
100 |
+
context = self.perceive_context(query)
|
101 |
+
|
102 |
+
# Stage 2: Core Reasoning Process
|
103 |
+
solutions = self.recursive_reasoning(query, context)
|
104 |
+
|
105 |
+
# Stage 3: Emotional Alignment
|
106 |
+
emotionally_aligned = self.apply_emotional_intelligence(solutions)
|
107 |
+
|
108 |
+
# Stage 4: Metacognitive Review
|
109 |
+
validated = self.metacognitive_review(emotionally_aligned)
|
110 |
+
|
111 |
+
# Stage 5: Knowledge Integration
|
112 |
+
self.update_knowledge_graph(query, validated)
|
113 |
+
|
114 |
+
return validated, {
|
115 |
+
"reasoning_steps": self.thought_history[-5:],
|
116 |
+
"confidence": self.calculate_confidence(validated),
|
117 |
+
"semantic_coherence": self.analyze_coherence(validated)
|
118 |
+
}
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
self.handle_error(e)
|
122 |
+
return "Cognitive processing failed", {}
|
123 |
+
|
124 |
+
def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
|
125 |
+
"""Deep recursive reasoning with backtracking"""
|
126 |
+
if depth >= self.cognitive_config["depth"]:
|
127 |
+
return []
|
128 |
+
|
129 |
+
# Generate initial hypotheses
|
130 |
+
hypotheses = self.generate_hypotheses(query, context)
|
131 |
+
|
132 |
+
# Evaluate hypotheses
|
133 |
+
evaluated = []
|
134 |
+
for hypothesis in hypotheses:
|
135 |
+
analysis = self.analyze_hypothesis(hypothesis, context)
|
136 |
+
critique = self.critique_analysis(analysis)
|
137 |
+
|
138 |
+
if self.evaluate_critique(critique):
|
139 |
+
refined = self.refine_hypothesis(hypothesis, critique)
|
140 |
+
evaluated.append({
|
141 |
+
"hypothesis": refined,
|
142 |
+
"confidence": self.calculate_confidence(refined),
|
143 |
+
"depth": depth
|
144 |
+
})
|
145 |
+
# Recursive deepening
|
146 |
+
evaluated += self.recursive_reasoning(refined, context, depth+1)
|
147 |
+
|
148 |
+
return self.rank_solutions(evaluated)
|
149 |
+
|
150 |
+
def generate_hypotheses(self, query: str, context: dict) -> List[str]:
|
151 |
+
"""Generate potential solutions using multiple models"""
|
152 |
+
hypotheses = []
|
153 |
+
|
154 |
+
# Intuitive generation
|
155 |
+
hypotheses.append(self.call_model(
|
156 |
+
"intuition",
|
157 |
+
f"Generate intuitive hypothesis for: {query}",
|
158 |
+
context
|
159 |
+
))
|
160 |
+
|
161 |
+
# Analytical generation
|
162 |
+
hypotheses.append(self.call_model(
|
163 |
+
"analysis",
|
164 |
+
f"Generate analytical solution for: {query}",
|
165 |
+
context
|
166 |
+
))
|
167 |
+
|
168 |
+
# Creative generation
|
169 |
+
hypotheses.append(self.call_model(
|
170 |
+
"creativity",
|
171 |
+
f"Generate creative approach for: {query}",
|
172 |
+
context
|
173 |
+
))
|
174 |
+
|
175 |
+
return [h for h in hypotheses if h]
|
176 |
+
|
177 |
+
def call_model(self, module: str, prompt: str, context: dict) -> str:
|
178 |
+
"""Advanced model caller with adaptive temperature and retry"""
|
179 |
+
temperature = self.calculate_temperature(context)
|
180 |
+
retries = 0
|
181 |
+
|
182 |
+
while retries < self.cognitive_config["max_retries"]:
|
183 |
+
try:
|
184 |
+
if module in ["intuition", "metacognition"]:
|
185 |
+
return self._call_mistral(prompt, temperature)
|
186 |
+
elif module == "analysis":
|
187 |
+
return self._call_gpt4o(prompt, temperature)
|
188 |
+
elif module == "creativity":
|
189 |
+
return self.gemini.generate_content(prompt).text
|
190 |
+
elif module == "emotional_intelligence":
|
191 |
+
return self._call_qwen(prompt)
|
192 |
+
elif module == "validation":
|
193 |
+
return self._call_deepseek(prompt)
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
retries += 1
|
197 |
+
self.handle_error(e)
|
198 |
+
|
199 |
+
return ""
|
200 |
+
|
201 |
+
def _call_mistral(self, prompt: str, temperature: float) -> str:
|
202 |
+
"""Call Mistral API"""
|
203 |
+
headers = {
|
204 |
+
"Authorization": f"Bearer {self.api_keys['MISTRAL']}",
|
205 |
+
"Content-Type": "application/json"
|
206 |
+
}
|
207 |
+
|
208 |
+
payload = {
|
209 |
+
"model": self.model_registry["intuition"],
|
210 |
+
"messages": [{"role": "user", "content": prompt}],
|
211 |
+
"temperature": temperature,
|
212 |
+
"max_tokens": 2000
|
213 |
+
}
|
214 |
+
|
215 |
+
response = requests.post(
|
216 |
+
"https://api.mistral.ai/v1/chat/completions",
|
217 |
+
headers=headers,
|
218 |
+
json=payload
|
219 |
+
)
|
220 |
+
|
221 |
+
return response.json()['choices'][0]['message']['content']
|
222 |
+
|
223 |
+
def _call_gpt4o(self, prompt: str, temperature: float) -> str:
|
224 |
+
"""Call GPT-4o via Azure"""
|
225 |
+
try:
|
226 |
+
response = self.gpt4o.chat.completions.create(
|
227 |
+
model=self.model_registry["analysis"],
|
228 |
+
messages=[{"role": "user", "content": prompt}],
|
229 |
+
temperature=temperature,
|
230 |
+
max_tokens=2000
|
231 |
+
)
|
232 |
+
return response.choices[0].message.content
|
233 |
+
except Exception as e:
|
234 |
+
raise RuntimeError(f"GPT-4o Error: {str(e)}")
|
235 |
+
|
236 |
+
def calculate_confidence(self, response: str) -> float:
|
237 |
+
"""Calculate semantic confidence score"""
|
238 |
+
query_embed = self.sentence_model.encode(response)
|
239 |
+
knowledge_embeds = self.knowledge_graph["embeddings"]
|
240 |
+
|
241 |
+
if knowledge_embeds.size == 0:
|
242 |
+
return 0.5 # Neutral confidence
|
243 |
+
|
244 |
+
similarities = cosine_similarity([query_embed], knowledge_embeds)
|
245 |
+
return np.max(similarities)
|
246 |
+
|
247 |
+
def update_knowledge_graph(self, query: str, response: str):
|
248 |
+
"""Dynamic knowledge integration"""
|
249 |
+
embedding = self.sentence_model.encode(response)
|
250 |
+
|
251 |
+
if self.knowledge_graph["embeddings"].size == 0:
|
252 |
+
self.knowledge_graph["embeddings"] = np.array([embedding])
|
253 |
+
else:
|
254 |
+
self.knowledge_graph["embeddings"] = np.vstack(
|
255 |
+
[self.knowledge_graph["embeddings"], embedding]
|
256 |
+
)
|
257 |
+
|
258 |
+
self.knowledge_graph["nodes"].append({
|
259 |
+
"id": len(self.knowledge_graph["nodes"]),
|
260 |
+
"content": response,
|
261 |
+
"embedding": embedding.tolist()
|
262 |
+
})
|
263 |
+
|
264 |
+
def handle_error(self, error: Exception):
|
265 |
+
"""Error handling and recovery"""
|
266 |
+
self.cognitive_metrics["error_rates"].append(time.time())
|
267 |
+
print(f"System Error: {str(error)}")
|
268 |
+
# Implement error recovery logic here
|
269 |
+
|
270 |
+
def create_agi_interface():
|
271 |
+
try:
|
272 |
+
agi = AGICognitiveSystem()
|
273 |
+
except ValueError as e:
|
274 |
+
return gr.Blocks().launch(error_message=str(e))
|
275 |
+
|
276 |
+
with gr.Blocks(title="Advanced AGI System", theme=gr.themes.Soft(), css="""
|
277 |
+
.cognitive-node { padding: 15px; margin: 10px; border-radius: 8px; background: #f8f9fa; }
|
278 |
+
.confidence-meter { height: 10px; background: #eee; border-radius: 5px; margin: 10px 0; }
|
279 |
+
.confidence-fill { height: 100%; border-radius: 5px; background: #4CAF50; }
|
280 |
+
""") as demo:
|
281 |
+
|
282 |
+
gr.Markdown("# 🧠 Advanced AGI Cognitive System")
|
283 |
+
|
284 |
+
with gr.Row():
|
285 |
+
input_panel = gr.Textbox(label="Input Query", lines=3,
|
286 |
+
placeholder="Enter complex query...")
|
287 |
+
with gr.Accordion("Cognitive Controls", open=False):
|
288 |
+
depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
|
289 |
+
creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
|
290 |
+
|
291 |
+
output_panel = gr.Markdown()
|
292 |
+
visualization = gr.HTML()
|
293 |
+
metrics = gr.DataFrame(headers=["Metric", "Value"])
|
294 |
+
|
295 |
+
input_panel.submit(
|
296 |
+
fn=agi.cognitive_flow,
|
297 |
+
inputs=input_panel,
|
298 |
+
outputs=[output_panel, metrics]
|
299 |
+
)
|
300 |
+
|
301 |
+
return demo
|
302 |
+
|
303 |
+
if __name__ == "__main__":
|
304 |
+
create_agi_interface().launch(server_port=7860)
|