Athspi commited on
Commit
d6a3aa4
·
verified ·
1 Parent(s): 0f8395f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +304 -0
app.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import gradio as gr
4
+ import requests
5
+ import json
6
+ import numpy as np
7
+ import google.generativeai as genai
8
+ from openai import OpenAI
9
+ from typing import List, Dict, Tuple
10
+ from sklearn.metrics.pairwise import cosine_similarity
11
+ from sentence_transformers import SentenceTransformer
12
+
13
+ class AGICognitiveSystem:
14
+ def __init__(self):
15
+ self.api_keys = {
16
+ "GEMINI": os.environ.get("GEMINI_API_KEY"),
17
+ "MISTRAL": os.environ.get("MISTRAL_API_KEY"),
18
+ "OPENROUTER": os.environ.get("OPENROUTER_API_KEY"),
19
+ "AZURE": os.environ.get("AZURE_API_KEY")
20
+ }
21
+ self.validate_keys()
22
+
23
+ # Initialize models and cognitive components
24
+ self.init_models()
25
+ self.init_cognitive_modules()
26
+ self.init_knowledge_graph()
27
+
28
+ # Initialize sentence transformer for semantic analysis
29
+ self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
30
+
31
+ # Cognitive configuration
32
+ self.cognitive_config = {
33
+ "depth": 5, # Levels of recursive reasoning
34
+ "temperature_strategy": "adaptive",
35
+ "confidence_threshold": 0.85,
36
+ "max_retries": 3,
37
+ "metacognition_interval": 2
38
+ }
39
+
40
+ self.thought_history = []
41
+ self.cognitive_metrics = {
42
+ "processing_time": [],
43
+ "confidence_scores": [],
44
+ "error_rates": []
45
+ }
46
+
47
+ def validate_keys(self):
48
+ for key, value in self.api_keys.items():
49
+ if not value:
50
+ raise ValueError(f"Missing API key: {key}")
51
+
52
+ def init_models(self):
53
+ """Initialize all AI models with specialized roles"""
54
+ # Google Gemini
55
+ genai.configure(api_key=self.api_keys["GEMINI"])
56
+ self.gemini = genai.GenerativeModel(
57
+ "gemini-2.0-pro-exp-02-05",
58
+ generation_config={"temperature": 0.5, "max_output_tokens": 8192}
59
+ )
60
+
61
+ # Azure GPT-4o
62
+ self.gpt4o = OpenAI(
63
+ base_url="https://models.inference.ai.azure.com",
64
+ api_key=self.api_keys["AZURE"]
65
+ )
66
+
67
+ # Model registry with specialized roles
68
+ self.model_registry = {
69
+ "intuition": "mistral-large-latest",
70
+ "analysis": "gpt-4o",
71
+ "critique": "meta-llama/llama-3.3-70b-instruct:free",
72
+ "creativity": "gemini-2.0-pro-exp-02-05",
73
+ "validation": "deepseek/deepseek-chat:free",
74
+ "metacognition": "gpt-4o",
75
+ "emotional_intelligence": "qwen/qwen-vl-plus:free"
76
+ }
77
+
78
+ def init_cognitive_modules(self):
79
+ """Initialize specialized cognitive processors"""
80
+ self.modules = {
81
+ "working_memory": [],
82
+ "long_term_memory": [],
83
+ "emotional_context": {"valence": 0.5, "arousal": 0.5},
84
+ "error_correction": [],
85
+ "metacognition_stack": []
86
+ }
87
+
88
+ def init_knowledge_graph(self):
89
+ """Initialize semantic knowledge network"""
90
+ self.knowledge_graph = {
91
+ "nodes": [],
92
+ "edges": [],
93
+ "embeddings": np.array([])
94
+ }
95
+
96
+ def cognitive_flow(self, query: str) -> Tuple[str, dict]:
97
+ """Multi-layered cognitive processing pipeline"""
98
+ try:
99
+ # Stage 1: Perception & Contextualization
100
+ context = self.perceive_context(query)
101
+
102
+ # Stage 2: Core Reasoning Process
103
+ solutions = self.recursive_reasoning(query, context)
104
+
105
+ # Stage 3: Emotional Alignment
106
+ emotionally_aligned = self.apply_emotional_intelligence(solutions)
107
+
108
+ # Stage 4: Metacognitive Review
109
+ validated = self.metacognitive_review(emotionally_aligned)
110
+
111
+ # Stage 5: Knowledge Integration
112
+ self.update_knowledge_graph(query, validated)
113
+
114
+ return validated, {
115
+ "reasoning_steps": self.thought_history[-5:],
116
+ "confidence": self.calculate_confidence(validated),
117
+ "semantic_coherence": self.analyze_coherence(validated)
118
+ }
119
+
120
+ except Exception as e:
121
+ self.handle_error(e)
122
+ return "Cognitive processing failed", {}
123
+
124
+ def recursive_reasoning(self, query: str, context: dict, depth: int = 0) -> List[dict]:
125
+ """Deep recursive reasoning with backtracking"""
126
+ if depth >= self.cognitive_config["depth"]:
127
+ return []
128
+
129
+ # Generate initial hypotheses
130
+ hypotheses = self.generate_hypotheses(query, context)
131
+
132
+ # Evaluate hypotheses
133
+ evaluated = []
134
+ for hypothesis in hypotheses:
135
+ analysis = self.analyze_hypothesis(hypothesis, context)
136
+ critique = self.critique_analysis(analysis)
137
+
138
+ if self.evaluate_critique(critique):
139
+ refined = self.refine_hypothesis(hypothesis, critique)
140
+ evaluated.append({
141
+ "hypothesis": refined,
142
+ "confidence": self.calculate_confidence(refined),
143
+ "depth": depth
144
+ })
145
+ # Recursive deepening
146
+ evaluated += self.recursive_reasoning(refined, context, depth+1)
147
+
148
+ return self.rank_solutions(evaluated)
149
+
150
+ def generate_hypotheses(self, query: str, context: dict) -> List[str]:
151
+ """Generate potential solutions using multiple models"""
152
+ hypotheses = []
153
+
154
+ # Intuitive generation
155
+ hypotheses.append(self.call_model(
156
+ "intuition",
157
+ f"Generate intuitive hypothesis for: {query}",
158
+ context
159
+ ))
160
+
161
+ # Analytical generation
162
+ hypotheses.append(self.call_model(
163
+ "analysis",
164
+ f"Generate analytical solution for: {query}",
165
+ context
166
+ ))
167
+
168
+ # Creative generation
169
+ hypotheses.append(self.call_model(
170
+ "creativity",
171
+ f"Generate creative approach for: {query}",
172
+ context
173
+ ))
174
+
175
+ return [h for h in hypotheses if h]
176
+
177
+ def call_model(self, module: str, prompt: str, context: dict) -> str:
178
+ """Advanced model caller with adaptive temperature and retry"""
179
+ temperature = self.calculate_temperature(context)
180
+ retries = 0
181
+
182
+ while retries < self.cognitive_config["max_retries"]:
183
+ try:
184
+ if module in ["intuition", "metacognition"]:
185
+ return self._call_mistral(prompt, temperature)
186
+ elif module == "analysis":
187
+ return self._call_gpt4o(prompt, temperature)
188
+ elif module == "creativity":
189
+ return self.gemini.generate_content(prompt).text
190
+ elif module == "emotional_intelligence":
191
+ return self._call_qwen(prompt)
192
+ elif module == "validation":
193
+ return self._call_deepseek(prompt)
194
+
195
+ except Exception as e:
196
+ retries += 1
197
+ self.handle_error(e)
198
+
199
+ return ""
200
+
201
+ def _call_mistral(self, prompt: str, temperature: float) -> str:
202
+ """Call Mistral API"""
203
+ headers = {
204
+ "Authorization": f"Bearer {self.api_keys['MISTRAL']}",
205
+ "Content-Type": "application/json"
206
+ }
207
+
208
+ payload = {
209
+ "model": self.model_registry["intuition"],
210
+ "messages": [{"role": "user", "content": prompt}],
211
+ "temperature": temperature,
212
+ "max_tokens": 2000
213
+ }
214
+
215
+ response = requests.post(
216
+ "https://api.mistral.ai/v1/chat/completions",
217
+ headers=headers,
218
+ json=payload
219
+ )
220
+
221
+ return response.json()['choices'][0]['message']['content']
222
+
223
+ def _call_gpt4o(self, prompt: str, temperature: float) -> str:
224
+ """Call GPT-4o via Azure"""
225
+ try:
226
+ response = self.gpt4o.chat.completions.create(
227
+ model=self.model_registry["analysis"],
228
+ messages=[{"role": "user", "content": prompt}],
229
+ temperature=temperature,
230
+ max_tokens=2000
231
+ )
232
+ return response.choices[0].message.content
233
+ except Exception as e:
234
+ raise RuntimeError(f"GPT-4o Error: {str(e)}")
235
+
236
+ def calculate_confidence(self, response: str) -> float:
237
+ """Calculate semantic confidence score"""
238
+ query_embed = self.sentence_model.encode(response)
239
+ knowledge_embeds = self.knowledge_graph["embeddings"]
240
+
241
+ if knowledge_embeds.size == 0:
242
+ return 0.5 # Neutral confidence
243
+
244
+ similarities = cosine_similarity([query_embed], knowledge_embeds)
245
+ return np.max(similarities)
246
+
247
+ def update_knowledge_graph(self, query: str, response: str):
248
+ """Dynamic knowledge integration"""
249
+ embedding = self.sentence_model.encode(response)
250
+
251
+ if self.knowledge_graph["embeddings"].size == 0:
252
+ self.knowledge_graph["embeddings"] = np.array([embedding])
253
+ else:
254
+ self.knowledge_graph["embeddings"] = np.vstack(
255
+ [self.knowledge_graph["embeddings"], embedding]
256
+ )
257
+
258
+ self.knowledge_graph["nodes"].append({
259
+ "id": len(self.knowledge_graph["nodes"]),
260
+ "content": response,
261
+ "embedding": embedding.tolist()
262
+ })
263
+
264
+ def handle_error(self, error: Exception):
265
+ """Error handling and recovery"""
266
+ self.cognitive_metrics["error_rates"].append(time.time())
267
+ print(f"System Error: {str(error)}")
268
+ # Implement error recovery logic here
269
+
270
+ def create_agi_interface():
271
+ try:
272
+ agi = AGICognitiveSystem()
273
+ except ValueError as e:
274
+ return gr.Blocks().launch(error_message=str(e))
275
+
276
+ with gr.Blocks(title="Advanced AGI System", theme=gr.themes.Soft(), css="""
277
+ .cognitive-node { padding: 15px; margin: 10px; border-radius: 8px; background: #f8f9fa; }
278
+ .confidence-meter { height: 10px; background: #eee; border-radius: 5px; margin: 10px 0; }
279
+ .confidence-fill { height: 100%; border-radius: 5px; background: #4CAF50; }
280
+ """) as demo:
281
+
282
+ gr.Markdown("# 🧠 Advanced AGI Cognitive System")
283
+
284
+ with gr.Row():
285
+ input_panel = gr.Textbox(label="Input Query", lines=3,
286
+ placeholder="Enter complex query...")
287
+ with gr.Accordion("Cognitive Controls", open=False):
288
+ depth = gr.Slider(1, 10, value=5, label="Reasoning Depth")
289
+ creativity = gr.Slider(0, 1, value=0.7, label="Creativity Level")
290
+
291
+ output_panel = gr.Markdown()
292
+ visualization = gr.HTML()
293
+ metrics = gr.DataFrame(headers=["Metric", "Value"])
294
+
295
+ input_panel.submit(
296
+ fn=agi.cognitive_flow,
297
+ inputs=input_panel,
298
+ outputs=[output_panel, metrics]
299
+ )
300
+
301
+ return demo
302
+
303
+ if __name__ == "__main__":
304
+ create_agi_interface().launch(server_port=7860)