File size: 5,465 Bytes
31dfffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import torch
import os
from faster_whisper import WhisperModel
from moviepy.editor import VideoFileClip

# Define the model and device
MODEL_NAME = "Systran/faster-whisper-large-v3"
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float32" if device == "cuda" else "int8"

# Load the Whisper model
model = WhisperModel(MODEL_NAME, device=device, compute_type=compute_type)

# List of all supported languages in Whisper
SUPPORTED_LANGUAGES = [
    "Auto Detect", "English", "Chinese", "German", "Spanish", "Russian", "Korean", 
    "French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", "Dutch", 
    "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", "Finnish", "Vietnamese", 
    "Hebrew", "Ukrainian", "Greek", "Malay", "Czech", "Romanian", "Danish", 
    "Hungarian", "Tamil", "Norwegian", "Thai", "Urdu", "Croatian", "Bulgarian", 
    "Lithuanian", "Latin", "Maori", "Malayalam", "Welsh", "Slovak", "Telugu", 
    "Persian", "Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", 
    "Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", 
    "Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian", 
    "Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", "Shona", 
    "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", "Belarusian", 
    "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", "Lao", "Uzbek", 
    "Faroese", "Haitian Creole", "Pashto", "Turkmen", "Nynorsk", "Maltese", 
    "Sanskrit", "Luxembourgish", "Burmese", "Tibetan", "Tagalog", "Malagasy", 
    "Assamese", "Tatar", "Hawaiian", "Lingala", "Hausa", "Bashkir", "Javanese", 
    "Sundanese"
]

def extract_audio_from_video(video_file):
    """Extract audio from a video file and save it as a WAV file."""
    video = VideoFileClip(video_file)
    audio_file = "extracted_audio.wav"
    video.audio.write_audiofile(audio_file, fps=16000)
    return audio_file

def generate_subtitles(audio_file, language="Auto Detect"):
    """Generate subtitles from an audio file using Whisper."""
    # Transcribe the audio
    segments, info = model.transcribe(
        audio_file,
        task="transcribe",
        language=None if language == "Auto Detect" else language.lower(),
        word_timestamps=True
    )
    
    # Generate SRT format subtitles
    srt_subtitles = ""
    for i, segment in enumerate(segments, start=1):
        start_time = segment.start
        end_time = segment.end
        text = segment.text.strip()
        
        # Format timestamps for SRT
        start_time_srt = format_timestamp(start_time)
        end_time_srt = format_timestamp(end_time)
        
        # Add to SRT
        srt_subtitles += f"{i}\n{start_time_srt} --> {end_time_srt}\n{text}\n\n"
    
    return srt_subtitles

def format_timestamp(seconds):
    """Convert seconds to SRT timestamp format (HH:MM:SS,mmm)."""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    seconds = seconds % 60
    milliseconds = int((seconds - int(seconds)) * 1000)
    return f"{hours:02}:{minutes:02}:{int(seconds):02},{milliseconds:03}"

def process_video(video_file, language="Auto Detect"):
    """Process a video file to generate subtitles."""
    # Extract audio from the video
    audio_file = extract_audio_from_video(video_file)
    
    # Generate subtitles
    subtitles = generate_subtitles(audio_file, language)
    
    # Save subtitles to an SRT file
    srt_file = "subtitles.srt"
    with open(srt_file, "w", encoding="utf-8") as f:
        f.write(subtitles)
    
    # Clean up extracted audio file
    os.remove(audio_file)
    
    return srt_file

# Custom CSS for styling
custom_css = """
.gradio-container {
    background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
    font-family: 'Arial', sans-serif;
}
.header {
    text-align: center;
    padding: 20px;
    background: linear-gradient(135deg, #6a11cb, #2575fc);
    color: white;
    border-radius: 10px;
    margin-bottom: 20px;
}
.header h1 {
    font-size: 2.5rem;
    margin: 0;
}
.header p {
    font-size: 1.2rem;
    margin: 10px 0 0;
}
.tab {
    background: white;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
"""

# Define the Gradio interface
with gr.Blocks(css=custom_css, title="AutoSubGen - AI Video Subtitle Generator") as demo:
    # Header
    with gr.Column(elem_classes="header"):
        gr.Markdown("# AutoSubGen")
        gr.Markdown("### AI-Powered Video Subtitle Generator")
        gr.Markdown("Automatically generate subtitles for your videos in SRT format. Supports 100+ languages and auto-detection.")
    
    # Main content
    with gr.Tab("Generate Subtitles", elem_classes="tab"):
        gr.Markdown("### Upload a video file to generate subtitles.")
        with gr.Row():
            video_input = gr.Video(label="Upload Video File", scale=2)
            language_dropdown = gr.Dropdown(
                choices=SUPPORTED_LANGUAGES,
                label="Select Language",
                value="Auto Detect",
                scale=1
            )
        generate_button = gr.Button("Generate Subtitles", variant="primary")
        subtitle_output = gr.File(label="Download Subtitles (SRT)")
    
    # Link button to function
    generate_button.click(
        process_video,
        inputs=[video_input, language_dropdown],
        outputs=subtitle_output
    )

# Launch the Gradio interface
demo.launch()