Spaces:
Sleeping
Sleeping
File size: 5,465 Bytes
31dfffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import torch
import os
from faster_whisper import WhisperModel
from moviepy.editor import VideoFileClip
# Define the model and device
MODEL_NAME = "Systran/faster-whisper-large-v3"
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float32" if device == "cuda" else "int8"
# Load the Whisper model
model = WhisperModel(MODEL_NAME, device=device, compute_type=compute_type)
# List of all supported languages in Whisper
SUPPORTED_LANGUAGES = [
"Auto Detect", "English", "Chinese", "German", "Spanish", "Russian", "Korean",
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", "Dutch",
"Arabic", "Swedish", "Italian", "Indonesian", "Hindi", "Finnish", "Vietnamese",
"Hebrew", "Ukrainian", "Greek", "Malay", "Czech", "Romanian", "Danish",
"Hungarian", "Tamil", "Norwegian", "Thai", "Urdu", "Croatian", "Bulgarian",
"Lithuanian", "Latin", "Maori", "Malayalam", "Welsh", "Slovak", "Telugu",
"Persian", "Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian",
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic",
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian",
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", "Shona",
"Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", "Belarusian",
"Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", "Lao", "Uzbek",
"Faroese", "Haitian Creole", "Pashto", "Turkmen", "Nynorsk", "Maltese",
"Sanskrit", "Luxembourgish", "Burmese", "Tibetan", "Tagalog", "Malagasy",
"Assamese", "Tatar", "Hawaiian", "Lingala", "Hausa", "Bashkir", "Javanese",
"Sundanese"
]
def extract_audio_from_video(video_file):
"""Extract audio from a video file and save it as a WAV file."""
video = VideoFileClip(video_file)
audio_file = "extracted_audio.wav"
video.audio.write_audiofile(audio_file, fps=16000)
return audio_file
def generate_subtitles(audio_file, language="Auto Detect"):
"""Generate subtitles from an audio file using Whisper."""
# Transcribe the audio
segments, info = model.transcribe(
audio_file,
task="transcribe",
language=None if language == "Auto Detect" else language.lower(),
word_timestamps=True
)
# Generate SRT format subtitles
srt_subtitles = ""
for i, segment in enumerate(segments, start=1):
start_time = segment.start
end_time = segment.end
text = segment.text.strip()
# Format timestamps for SRT
start_time_srt = format_timestamp(start_time)
end_time_srt = format_timestamp(end_time)
# Add to SRT
srt_subtitles += f"{i}\n{start_time_srt} --> {end_time_srt}\n{text}\n\n"
return srt_subtitles
def format_timestamp(seconds):
"""Convert seconds to SRT timestamp format (HH:MM:SS,mmm)."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = seconds % 60
milliseconds = int((seconds - int(seconds)) * 1000)
return f"{hours:02}:{minutes:02}:{int(seconds):02},{milliseconds:03}"
def process_video(video_file, language="Auto Detect"):
"""Process a video file to generate subtitles."""
# Extract audio from the video
audio_file = extract_audio_from_video(video_file)
# Generate subtitles
subtitles = generate_subtitles(audio_file, language)
# Save subtitles to an SRT file
srt_file = "subtitles.srt"
with open(srt_file, "w", encoding="utf-8") as f:
f.write(subtitles)
# Clean up extracted audio file
os.remove(audio_file)
return srt_file
# Custom CSS for styling
custom_css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
font-family: 'Arial', sans-serif;
}
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #6a11cb, #2575fc);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.header h1 {
font-size: 2.5rem;
margin: 0;
}
.header p {
font-size: 1.2rem;
margin: 10px 0 0;
}
.tab {
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
"""
# Define the Gradio interface
with gr.Blocks(css=custom_css, title="AutoSubGen - AI Video Subtitle Generator") as demo:
# Header
with gr.Column(elem_classes="header"):
gr.Markdown("# AutoSubGen")
gr.Markdown("### AI-Powered Video Subtitle Generator")
gr.Markdown("Automatically generate subtitles for your videos in SRT format. Supports 100+ languages and auto-detection.")
# Main content
with gr.Tab("Generate Subtitles", elem_classes="tab"):
gr.Markdown("### Upload a video file to generate subtitles.")
with gr.Row():
video_input = gr.Video(label="Upload Video File", scale=2)
language_dropdown = gr.Dropdown(
choices=SUPPORTED_LANGUAGES,
label="Select Language",
value="Auto Detect",
scale=1
)
generate_button = gr.Button("Generate Subtitles", variant="primary")
subtitle_output = gr.File(label="Download Subtitles (SRT)")
# Link button to function
generate_button.click(
process_video,
inputs=[video_input, language_dropdown],
outputs=subtitle_output
)
# Launch the Gradio interface
demo.launch() |