Update app.py
Browse files
app.py
CHANGED
@@ -2,40 +2,43 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
tacotron2 = tacotron2.to(device)
|
14 |
-
waveglow = waveglow.to(device)
|
15 |
|
16 |
def synthesize_speech(text):
|
17 |
try:
|
18 |
if not text.strip():
|
19 |
-
|
20 |
-
|
21 |
with torch.inference_mode():
|
22 |
-
# Process text
|
23 |
processed, lengths = text_processor(text)
|
24 |
processed = processed.to(device)
|
25 |
lengths = lengths.to(device)
|
26 |
|
27 |
-
# Generate spectrogram
|
28 |
-
|
29 |
|
30 |
# Generate waveform
|
31 |
-
waveform
|
32 |
|
33 |
-
# Convert to numpy array
|
34 |
waveform = waveform.cpu().squeeze().numpy()
|
35 |
-
return (bundle.sample_rate, waveform)
|
36 |
-
|
37 |
except Exception as e:
|
38 |
-
return f"Error: {str(e)}"
|
39 |
|
40 |
# Create Gradio interface
|
41 |
interface = gr.Interface(
|
@@ -45,19 +48,18 @@ interface = gr.Interface(
|
|
45 |
placeholder="Enter text to synthesize...",
|
46 |
lines=3
|
47 |
),
|
48 |
-
outputs=
|
49 |
-
label="Generated Speech",
|
50 |
-
|
51 |
-
|
52 |
title="MMS-TTS English Text-to-Speech",
|
53 |
-
description="Convert text to speech using Facebook's MMS-TTS
|
54 |
examples=[
|
55 |
-
["Hello! This is a text-to-speech demonstration."],
|
56 |
["The quick brown fox jumps over the lazy dog."],
|
57 |
-
["Natural language processing is fascinating!"]
|
58 |
]
|
59 |
)
|
60 |
|
61 |
-
# Launch the application
|
62 |
if __name__ == "__main__":
|
63 |
-
interface.launch(
|
|
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
|
5 |
+
# Initialize MMS-TTS pipeline
|
6 |
+
def load_models():
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
bundle = torchaudio.pipelines.MMS_TTS.get_bundle("eng")
|
9 |
+
|
10 |
+
# Load components
|
11 |
+
text_processor = bundle.get_text_processor()
|
12 |
+
tacotron2 = bundle.get_tacotron2().to(device)
|
13 |
+
vocoder = bundle.get_vocoder().to(device)
|
14 |
+
|
15 |
+
return text_processor, tacotron2, vocoder, device
|
16 |
|
17 |
+
text_processor, tacotron2, vocoder, device = load_models()
|
|
|
|
|
|
|
18 |
|
19 |
def synthesize_speech(text):
|
20 |
try:
|
21 |
if not text.strip():
|
22 |
+
return None, "Please enter some text to synthesize"
|
23 |
+
|
24 |
with torch.inference_mode():
|
25 |
+
# Process text
|
26 |
processed, lengths = text_processor(text)
|
27 |
processed = processed.to(device)
|
28 |
lengths = lengths.to(device)
|
29 |
|
30 |
+
# Generate mel spectrogram
|
31 |
+
mel_spec, mel_lengths = tacotron2(processed, lengths)
|
32 |
|
33 |
# Generate waveform
|
34 |
+
waveform = vocoder(mel_spec)
|
35 |
|
36 |
+
# Convert to numpy array
|
37 |
waveform = waveform.cpu().squeeze().numpy()
|
38 |
+
return (bundle.sample_rate, waveform), None
|
39 |
+
|
40 |
except Exception as e:
|
41 |
+
return None, f"Error: {str(e)}"
|
42 |
|
43 |
# Create Gradio interface
|
44 |
interface = gr.Interface(
|
|
|
48 |
placeholder="Enter text to synthesize...",
|
49 |
lines=3
|
50 |
),
|
51 |
+
outputs=[
|
52 |
+
gr.Audio(label="Generated Speech"),
|
53 |
+
gr.Textbox(label="Error Message", visible=False)
|
54 |
+
],
|
55 |
title="MMS-TTS English Text-to-Speech",
|
56 |
+
description="Convert text to speech using Facebook's MMS-TTS model",
|
57 |
examples=[
|
58 |
+
["Hello! This is a working text-to-speech demonstration."],
|
59 |
["The quick brown fox jumps over the lazy dog."],
|
60 |
+
["Natural language processing is truly fascinating!"]
|
61 |
]
|
62 |
)
|
63 |
|
|
|
64 |
if __name__ == "__main__":
|
65 |
+
interface.launch()
|