Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,36 @@
|
|
1 |
-
import
|
2 |
-
from snac import SNAC
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from huggingface_hub import snapshot_download
|
7 |
from dotenv import load_dotenv
|
|
|
|
|
8 |
load_dotenv()
|
9 |
|
10 |
-
#
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
print("Loading SNAC model...")
|
14 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
15 |
snac_model = snac_model.to(device)
|
|
|
16 |
|
17 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
18 |
|
19 |
-
# Download only model config and safetensors
|
20 |
snapshot_download(
|
21 |
repo_id=model_name,
|
22 |
allow_patterns=[
|
@@ -38,36 +52,34 @@ snapshot_download(
|
|
38 |
]
|
39 |
)
|
40 |
|
41 |
-
|
|
|
42 |
model.to(device)
|
|
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
print(f"Orpheus model loaded to {device}")
|
45 |
|
46 |
-
# Process text prompt
|
47 |
def process_prompt(prompt, voice, tokenizer, device):
|
48 |
prompt = f"{voice}: {prompt}"
|
49 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
50 |
-
|
51 |
-
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start
|
52 |
-
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End
|
53 |
-
|
54 |
-
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
55 |
-
|
56 |
-
# No padding needed for single input
|
57 |
attention_mask = torch.ones_like(modified_input_ids)
|
58 |
-
|
59 |
return modified_input_ids.to(device), attention_mask.to(device)
|
60 |
|
61 |
-
# Parse output tokens to audio
|
62 |
def parse_output(generated_ids):
|
63 |
token_to_find = 128257
|
64 |
token_to_remove = 128258
|
65 |
-
|
66 |
-
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
67 |
|
|
|
68 |
if len(token_indices[1]) > 0:
|
69 |
last_occurrence_idx = token_indices[1][-1].item()
|
70 |
-
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
71 |
else:
|
72 |
cropped_tensor = generated_ids
|
73 |
|
@@ -83,47 +95,43 @@ def parse_output(generated_ids):
|
|
83 |
trimmed_row = row[:new_length]
|
84 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
85 |
code_lists.append(trimmed_row)
|
86 |
-
|
87 |
-
return code_lists[0] # Return just the first one for single sample
|
88 |
|
89 |
-
#
|
|
|
|
|
90 |
def redistribute_codes(code_list, snac_model):
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
layer_2.append(code_list[7*i+
|
99 |
-
layer_3.append(code_list[7*i+
|
100 |
-
layer_3.append(code_list[7*i+
|
101 |
-
|
102 |
-
layer_3.append(code_list[7*i+5]-(5*4096))
|
103 |
-
layer_3.append(code_list[7*i+6]-(6*4096))
|
104 |
-
|
105 |
-
# Move tensors to the same device as the SNAC model
|
106 |
codes = [
|
107 |
-
torch.tensor(layer_1, device=
|
108 |
-
torch.tensor(layer_2, device=
|
109 |
-
torch.tensor(layer_3, device=
|
110 |
]
|
111 |
-
|
112 |
audio_hat = snac_model.decode(codes)
|
113 |
-
return audio_hat.detach().squeeze().cpu().numpy()
|
114 |
|
115 |
-
# Main generation function
|
116 |
-
@
|
117 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
118 |
if not text.strip():
|
119 |
return None
|
120 |
-
|
121 |
try:
|
122 |
progress(0.1, "Processing text...")
|
123 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
124 |
-
|
125 |
progress(0.3, "Generating speech tokens...")
|
126 |
-
with torch.
|
127 |
generated_ids = model.generate(
|
128 |
input_ids=input_ids,
|
129 |
attention_mask=attention_mask,
|
@@ -135,39 +143,38 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
|
|
135 |
num_return_sequences=1,
|
136 |
eos_token_id=128258,
|
137 |
)
|
138 |
-
|
139 |
progress(0.6, "Processing speech tokens...")
|
140 |
code_list = parse_output(generated_ids)
|
141 |
-
|
142 |
-
progress(0.8, "Converting to audio...")
|
143 |
audio_samples = redistribute_codes(code_list, snac_model)
|
144 |
-
|
145 |
-
return (24000, audio_samples) # Return sample rate and audio
|
146 |
except Exception as e:
|
147 |
print(f"Error generating speech: {e}")
|
148 |
return None
|
149 |
|
150 |
-
#
|
151 |
examples = [
|
152 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
153 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
154 |
-
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well,
|
155 |
]
|
156 |
|
157 |
-
# Available voices
|
158 |
VOICES = ["tara", "dan", "josh", "emma"]
|
159 |
|
160 |
# Create Gradio interface
|
161 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
162 |
gr.Markdown("""
|
163 |
-
# 🎵
|
164 |
-
Enter your text below and hear it converted to natural-sounding speech
|
165 |
|
166 |
-
|
167 |
-
-
|
168 |
-
- Longer
|
169 |
-
- Adjust the temperature slider
|
170 |
-
""")
|
171 |
with gr.Row():
|
172 |
with gr.Column(scale=3):
|
173 |
text_input = gr.Textbox(
|
@@ -180,37 +187,33 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
180 |
value="tara",
|
181 |
label="Voice"
|
182 |
)
|
183 |
-
|
184 |
with gr.Accordion("Advanced Settings", open=False):
|
185 |
temperature = gr.Slider(
|
186 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
187 |
-
label="Temperature",
|
188 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
189 |
)
|
190 |
top_p = gr.Slider(
|
191 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
192 |
-
label="Top P",
|
193 |
info="Nucleus sampling threshold"
|
194 |
)
|
195 |
repetition_penalty = gr.Slider(
|
196 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
197 |
-
label="Repetition Penalty",
|
198 |
info="Higher values discourage repetitive patterns"
|
199 |
)
|
200 |
max_new_tokens = gr.Slider(
|
201 |
minimum=100, maximum=2000, value=1200, step=100,
|
202 |
-
label="Max Length",
|
203 |
info="Maximum length of generated audio (in tokens)"
|
204 |
)
|
205 |
-
|
206 |
with gr.Row():
|
207 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
208 |
clear_btn = gr.Button("Clear")
|
209 |
-
|
210 |
with gr.Column(scale=2):
|
211 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
212 |
-
|
213 |
-
# Set up examples
|
214 |
gr.Examples(
|
215 |
examples=examples,
|
216 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
@@ -219,19 +222,17 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
219 |
cache_examples=True,
|
220 |
)
|
221 |
|
222 |
-
# Set up event handlers
|
223 |
submit_btn.click(
|
224 |
fn=generate_speech,
|
225 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
226 |
outputs=audio_output
|
227 |
)
|
228 |
-
|
229 |
clear_btn.click(
|
230 |
fn=lambda: (None, None),
|
231 |
inputs=[],
|
232 |
outputs=[text_input, audio_output]
|
233 |
)
|
234 |
|
235 |
-
# Launch the app
|
236 |
if __name__ == "__main__":
|
237 |
-
demo.queue().launch(share=False, ssr_mode=False)
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from huggingface_hub import snapshot_download
|
6 |
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Load environment variables
|
9 |
load_dotenv()
|
10 |
|
11 |
+
# Device and torch dtype selection
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
14 |
+
|
15 |
+
# Define a no-op decorator for CPU if needed
|
16 |
+
def gpu_decorator(func):
|
17 |
+
return func
|
18 |
+
|
19 |
+
# If you are on GPU and have the spaces module, you could replace gpu_decorator with spaces.GPU
|
20 |
+
# For CPU usage we simply use a no-op
|
21 |
+
# Example: from snac import spaces; gpu_decorator = spaces.GPU()
|
22 |
+
|
23 |
+
# Import SNAC after setting device
|
24 |
+
from snac import SNAC
|
25 |
|
26 |
print("Loading SNAC model...")
|
27 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
28 |
snac_model = snac_model.to(device)
|
29 |
+
snac_model.eval() # set SNAC to eval mode
|
30 |
|
31 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
32 |
|
33 |
+
# Download only model config and safetensors files
|
34 |
snapshot_download(
|
35 |
repo_id=model_name,
|
36 |
allow_patterns=[
|
|
|
52 |
]
|
53 |
)
|
54 |
|
55 |
+
print("Loading Orpheus model...")
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
|
57 |
model.to(device)
|
58 |
+
model.eval() # set Orpheus to eval mode
|
59 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
print(f"Orpheus model loaded to {device}")
|
61 |
|
62 |
+
# Process text prompt into tokens with start/end markers
|
63 |
def process_prompt(prompt, voice, tokenizer, device):
|
64 |
prompt = f"{voice}: {prompt}"
|
65 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
66 |
+
|
67 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start token
|
68 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End tokens
|
69 |
+
|
70 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
|
|
|
|
71 |
attention_mask = torch.ones_like(modified_input_ids)
|
|
|
72 |
return modified_input_ids.to(device), attention_mask.to(device)
|
73 |
|
74 |
+
# Parse output tokens to extract audio codes
|
75 |
def parse_output(generated_ids):
|
76 |
token_to_find = 128257
|
77 |
token_to_remove = 128258
|
|
|
|
|
78 |
|
79 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
80 |
if len(token_indices[1]) > 0:
|
81 |
last_occurrence_idx = token_indices[1][-1].item()
|
82 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
|
83 |
else:
|
84 |
cropped_tensor = generated_ids
|
85 |
|
|
|
95 |
trimmed_row = row[:new_length]
|
96 |
trimmed_row = [t - 128266 for t in trimmed_row]
|
97 |
code_lists.append(trimmed_row)
|
|
|
|
|
98 |
|
99 |
+
return code_lists[0] # Return first sample
|
100 |
+
|
101 |
+
# Redistribute codes for audio generation using SNAC
|
102 |
def redistribute_codes(code_list, snac_model):
|
103 |
+
snac_device = next(snac_model.parameters()).device
|
104 |
+
layer_1, layer_2, layer_3 = [], [], []
|
105 |
+
for i in range((len(code_list) + 1) // 7):
|
106 |
+
layer_1.append(code_list[7 * i])
|
107 |
+
layer_2.append(code_list[7 * i + 1] - 4096)
|
108 |
+
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
|
109 |
+
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
|
110 |
+
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
|
111 |
+
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
|
112 |
+
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
|
113 |
+
|
|
|
|
|
|
|
|
|
114 |
codes = [
|
115 |
+
torch.tensor(layer_1, device=snac_device).unsqueeze(0),
|
116 |
+
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
|
117 |
+
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
|
118 |
]
|
119 |
+
|
120 |
audio_hat = snac_model.decode(codes)
|
121 |
+
return audio_hat.detach().squeeze().cpu().numpy()
|
122 |
|
123 |
+
# Main generation function with CPU optimizations
|
124 |
+
@gpu_decorator
|
125 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
126 |
if not text.strip():
|
127 |
return None
|
128 |
+
|
129 |
try:
|
130 |
progress(0.1, "Processing text...")
|
131 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
132 |
+
|
133 |
progress(0.3, "Generating speech tokens...")
|
134 |
+
with torch.inference_mode():
|
135 |
generated_ids = model.generate(
|
136 |
input_ids=input_ids,
|
137 |
attention_mask=attention_mask,
|
|
|
143 |
num_return_sequences=1,
|
144 |
eos_token_id=128258,
|
145 |
)
|
146 |
+
|
147 |
progress(0.6, "Processing speech tokens...")
|
148 |
code_list = parse_output(generated_ids)
|
149 |
+
|
150 |
+
progress(0.8, "Converting tokens to audio...")
|
151 |
audio_samples = redistribute_codes(code_list, snac_model)
|
152 |
+
|
153 |
+
return (24000, audio_samples) # Return sample rate and numpy array audio
|
154 |
except Exception as e:
|
155 |
print(f"Error generating speech: {e}")
|
156 |
return None
|
157 |
|
158 |
+
# Example inputs for the Gradio UI
|
159 |
examples = [
|
160 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
161 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
162 |
+
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, let's just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
|
163 |
]
|
164 |
|
|
|
165 |
VOICES = ["tara", "dan", "josh", "emma"]
|
166 |
|
167 |
# Create Gradio interface
|
168 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
169 |
gr.Markdown("""
|
170 |
+
# 🎵 Orpheus Text-to-Speech
|
171 |
+
Enter your text below and hear it converted to natural-sounding speech.
|
172 |
|
173 |
+
**Tips for better prompts:**
|
174 |
+
- Include paralinguistic elements like `<chuckle>`, `<sigh>`, or `uhm` for more human-like speech.
|
175 |
+
- Longer prompts often produce more natural results.
|
176 |
+
- Adjust the temperature slider to control variation in speech patterns.
|
177 |
+
""")
|
178 |
with gr.Row():
|
179 |
with gr.Column(scale=3):
|
180 |
text_input = gr.Textbox(
|
|
|
187 |
value="tara",
|
188 |
label="Voice"
|
189 |
)
|
|
|
190 |
with gr.Accordion("Advanced Settings", open=False):
|
191 |
temperature = gr.Slider(
|
192 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
193 |
+
label="Temperature",
|
194 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
195 |
)
|
196 |
top_p = gr.Slider(
|
197 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
198 |
+
label="Top P",
|
199 |
info="Nucleus sampling threshold"
|
200 |
)
|
201 |
repetition_penalty = gr.Slider(
|
202 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
203 |
+
label="Repetition Penalty",
|
204 |
info="Higher values discourage repetitive patterns"
|
205 |
)
|
206 |
max_new_tokens = gr.Slider(
|
207 |
minimum=100, maximum=2000, value=1200, step=100,
|
208 |
+
label="Max Length",
|
209 |
info="Maximum length of generated audio (in tokens)"
|
210 |
)
|
|
|
211 |
with gr.Row():
|
212 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
213 |
clear_btn = gr.Button("Clear")
|
|
|
214 |
with gr.Column(scale=2):
|
215 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
216 |
+
|
|
|
217 |
gr.Examples(
|
218 |
examples=examples,
|
219 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
|
|
222 |
cache_examples=True,
|
223 |
)
|
224 |
|
|
|
225 |
submit_btn.click(
|
226 |
fn=generate_speech,
|
227 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
228 |
outputs=audio_output
|
229 |
)
|
|
|
230 |
clear_btn.click(
|
231 |
fn=lambda: (None, None),
|
232 |
inputs=[],
|
233 |
outputs=[text_input, audio_output]
|
234 |
)
|
235 |
|
236 |
+
# Launch the Gradio app
|
237 |
if __name__ == "__main__":
|
238 |
+
demo.queue().launch(share=False, ssr_mode=False)
|