Update app.py
Browse files
app.py
CHANGED
@@ -1,116 +1,95 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
from transformers import AutoTokenizer
|
5 |
-
import onnxruntime
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
import os
|
8 |
|
9 |
-
# --- Configuration ---
|
10 |
-
repo_id = "Athspi/Gg"
|
11 |
-
onnx_filename = "mms_tts_eng.onnx"
|
12 |
-
sampling_rate = 16000
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
session_options = onnxruntime.SessionOptions()
|
24 |
-
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
25 |
-
try:
|
26 |
-
import psutil
|
27 |
-
num_physical_cores = psutil.cpu_count(logical=False)
|
28 |
-
except ImportError:
|
29 |
-
print("psutil not installed. Install with: pip install psutil")
|
30 |
-
num_physical_cores = 4
|
31 |
-
print(f"Using default: {num_physical_cores}")
|
32 |
-
session_options.intra_op_num_threads = num_physical_cores
|
33 |
-
session_options.inter_op_num_threads = 1
|
34 |
-
|
35 |
-
ort_session = onnxruntime.InferenceSession(
|
36 |
-
onnx_model_path,
|
37 |
-
providers=['CPUExecutionProvider'],
|
38 |
-
sess_options=session_options,
|
39 |
-
)
|
40 |
|
41 |
-
# --- IO Binding Setup ---
|
42 |
-
io_binding = ort_session.io_binding()
|
43 |
-
input_meta = ort_session.get_inputs()[0]
|
44 |
-
output_meta = ort_session.get_outputs()[0]
|
45 |
-
dummy_input = tokenizer("a", return_tensors="pt")["input_ids"].to(torch.long)
|
46 |
-
input_shape = tuple(dummy_input.shape)
|
47 |
-
input_type = dummy_input.numpy().dtype
|
48 |
-
input_tensor = torch.empty(input_shape, dtype=torch.int64, device="cpu").contiguous()
|
49 |
-
max_output_length = input_shape[1] * 10
|
50 |
-
output_shape = (1, 1, max_output_length)
|
51 |
-
output_tensor = torch.empty(output_shape, dtype=torch.float32, device="cpu").contiguous()
|
52 |
-
|
53 |
-
# Bind BEFORE clear_binding_outputs
|
54 |
-
io_binding.bind_input(
|
55 |
-
name=input_meta.name, device_type="cpu", device_id=0,
|
56 |
-
element_type=input_type, shape=input_shape, buffer_ptr=input_tensor.data_ptr(),
|
57 |
-
)
|
58 |
-
io_binding.bind_output(
|
59 |
-
name=output_meta.name, device_type="cpu", device_id=0,
|
60 |
-
element_type=np.float32, shape=output_shape, buffer_ptr=output_tensor.data_ptr(),
|
61 |
-
)
|
62 |
-
# --- Inference Function ---
|
63 |
-
|
64 |
-
def tts_inference_io_binding(text: str):
|
65 |
-
"""TTS inference with IO Binding."""
|
66 |
-
global input_tensor, output_tensor, io_binding
|
67 |
-
|
68 |
-
inputs = tokenizer(text, return_tensors="pt")
|
69 |
-
input_ids = inputs.input_ids.to(torch.long)
|
70 |
-
current_input_shape = tuple(input_ids.shape)
|
71 |
-
|
72 |
-
if current_input_shape[1] > input_tensor.shape[1]:
|
73 |
-
input_tensor = torch.empty(current_input_shape, dtype=torch.int64, device="cpu").contiguous()
|
74 |
-
io_binding.bind_input( # Re-bind input
|
75 |
-
name=input_meta.name, device_type="cpu", device_id=0,
|
76 |
-
element_type=input_type, shape=current_input_shape,
|
77 |
-
buffer_ptr=input_tensor.data_ptr(),
|
78 |
-
)
|
79 |
-
|
80 |
-
input_tensor[:current_input_shape[0], :current_input_shape[1]].copy_(input_ids)
|
81 |
-
|
82 |
-
required_output_length = current_input_shape[1] * 10
|
83 |
-
if required_output_length > output_tensor.shape[2]:
|
84 |
-
output_shape = (1, 1, required_output_length)
|
85 |
-
output_tensor = torch.empty(output_shape, dtype=torch.float32, device="cpu").contiguous()
|
86 |
-
io_binding.bind_output( # Re-bind output
|
87 |
-
name=output_meta.name, device_type="cpu", device_id=0,
|
88 |
-
element_type=np.float32, shape=output_shape,
|
89 |
-
buffer_ptr=output_tensor.data_ptr(),
|
90 |
-
)
|
91 |
-
|
92 |
-
io_binding.clear_binding_outputs() # Clear outputs *after* binding
|
93 |
-
ort_session.run_with_iobinding(io_binding)
|
94 |
-
ort_outputs = io_binding.get_outputs()
|
95 |
-
output_data = ort_outputs[0].numpy() # Directly use the bound output
|
96 |
-
return (sampling_rate, output_data.squeeze())
|
97 |
-
|
98 |
-
# --- Gradio Interface ---
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
iface = gr.Interface(
|
101 |
-
fn=
|
102 |
-
inputs=
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
],
|
112 |
-
|
|
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers.utils import export_to_video, load_image
|
4 |
+
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
|
5 |
+
from transformers import CLIPVisionModel
|
6 |
import numpy as np
|
|
|
|
|
|
|
7 |
import os
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Install necessary libraries (using a more robust approach)
|
11 |
+
try:
|
12 |
+
import diffusers
|
13 |
+
print("diffusers is already installed.")
|
14 |
+
except ImportError:
|
15 |
+
print("Installing diffusers...")
|
16 |
+
os.system("pip install git+https://github.com/huggingface/diffusers.git transformers accelerate") # install required packages
|
17 |
+
import diffusers # try importing again after installation.
|
18 |
|
19 |
+
# Download necessary model (check and load)
|
20 |
+
model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
|
21 |
+
lora_weights = "Remade/Squish"
|
22 |
|
23 |
+
def load_models():
|
24 |
+
try:
|
25 |
+
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
26 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
27 |
+
pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16)
|
28 |
+
pipe.to("cuda")
|
29 |
+
pipe.load_lora_weights(lora_weights)
|
30 |
+
pipe.enable_model_cpu_offload() # For low-VRAM
|
31 |
+
return pipe
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error loading models: {e}")
|
34 |
+
return None
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
pipe = load_models() # Load models outside the function, so they are loaded only once
|
39 |
+
|
40 |
+
def generate_video(image_url, prompt, num_frames, guidance_scale, num_inference_steps, progress=gr.Progress()):
|
41 |
+
if pipe is None:
|
42 |
+
return "Error: Model failed to load. Check server logs for details.", None
|
43 |
+
|
44 |
+
if not image_url or not prompt:
|
45 |
+
return "Error: Please provide both an image URL and a prompt.", None
|
46 |
+
|
47 |
+
try:
|
48 |
+
image = load_image(image_url)
|
49 |
+
|
50 |
+
max_area = 480 * 832
|
51 |
+
aspect_ratio = image.height / image.width
|
52 |
+
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
53 |
+
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
54 |
+
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
55 |
+
image = image.resize((width, height))
|
56 |
+
|
57 |
+
|
58 |
+
output = pipe(
|
59 |
+
image=image,
|
60 |
+
prompt=prompt,
|
61 |
+
height=height,
|
62 |
+
width=width,
|
63 |
+
num_frames=int(num_frames),
|
64 |
+
guidance_scale=guidance_scale,
|
65 |
+
num_inference_steps=int(num_inference_steps)
|
66 |
+
).frames[0]
|
67 |
+
|
68 |
+
export_to_video(output, "output.mp4", fps=16) # save locally first
|
69 |
+
return "output.mp4", "output.mp4" # Return both file path and Gradio's video component path
|
70 |
+
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
return f"An error occurred: {e}", None
|
74 |
+
|
75 |
+
|
76 |
+
# Gradio Interface
|
77 |
iface = gr.Interface(
|
78 |
+
fn=generate_video,
|
79 |
+
inputs=[
|
80 |
+
gr.Image(type="filepath", label="Input Image URL (or upload)"), # allow local files
|
81 |
+
gr.Textbox(label="Prompt"),
|
82 |
+
gr.Slider(minimum=10, maximum=100, step=1, value=81, label="Number of Frames"),
|
83 |
+
gr.Slider(minimum=1, maximum=10, step=0.1, value=5.0, label="Guidance Scale"),
|
84 |
+
gr.Slider(minimum=10, maximum=50, step=1, value=28, label="Inference Steps"),
|
85 |
+
],
|
86 |
+
outputs=[
|
87 |
+
gr.Textbox(label="Status/Error Message"),
|
88 |
+
gr.Video(label="Generated Video"), # Display the generated video
|
89 |
],
|
90 |
+
title="Wan Image-to-Video Generator",
|
91 |
+
description="Generate videos from an image and a text prompt using the Wan Image-to-Video model.",
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
+
iface.launch(server_name="0.0.0.0", server_port=7860) # make accessible on the network
|