Athspi commited on
Commit
18f45c3
·
verified ·
1 Parent(s): e96395f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -406
app.py CHANGED
@@ -6,447 +6,153 @@ import os
6
  import pylint
7
  import pandas as pd
8
  import numpy as np
9
- from sklearn.model_selection import train_test_split, GridSearchCV
10
- from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
11
- from sklearn.metrics import (accuracy_score, precision_score,
12
- recall_score, f1_score, confusion_matrix)
13
  import git
14
  import spacy
15
- from spacy.lang.en import English
16
  import boto3
17
  import unittest
18
- import docker
19
  import sympy as sp
20
- from scipy.optimize import minimize, differential_evolution
21
  import matplotlib.pyplot as plt
22
  import seaborn as sns
23
- from IPython.display import display
24
  from tenacity import retry, stop_after_attempt, wait_fixed
25
- import torch
26
- import torch.nn as nn
27
- import torch.optim as optim
28
- from transformers import (AutoTokenizer, AutoModel,
29
- pipeline, set_seed)
30
  import networkx as nx
31
- from sklearn.cluster import KMeans
32
  from scipy.stats import ttest_ind
33
- from statsmodels.tsa.arima.model import ARIMA
34
  import nltk
35
  from nltk.sentiment import SentimentIntensityAnalyzer
36
- import cv2
37
  from PIL import Image
38
- import tensorflow as tf
39
- from tensorflow.keras.applications import ResNet50
40
- from tensorflow.keras.preprocessing import image
41
- from tensorflow.keras.applications.resnet50 import preprocess_input
42
  import logging
43
- from logging.handlers import RotatingFileHandler
44
- import platform
45
- import psutil
46
- import yaml
47
- import json
48
- import black
49
- import flake8.main.application
50
 
51
- # Initialize NLTK resources
52
- nltk.download('punkt')
53
- nltk.download('vader_lexicon')
 
 
 
 
 
54
 
55
- # Configure logging
56
- log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5)
57
- logging.basicConfig(
58
- handlers=[log_handler],
59
- level=logging.INFO,
60
- format='%(asctime)s - %(levelname)s - %(message)s'
61
- )
62
-
63
- # Configure the Gemini API
64
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
65
 
66
- # Enhanced system instructions with security and best practices
67
- SYSTEM_INSTRUCTIONS = """
68
- You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines:
69
- 1. Generate secure, efficient, and maintainable code
70
- 2. Implement industry best practices and design patterns
71
- 3. Include proper error handling and logging
72
- 4. Optimize for performance and scalability
73
- 5. Add detailed documentation and type hints
74
- 6. Suggest relevant libraries and frameworks
75
- 7. Consider security implications and vulnerabilities
76
- 8. Provide test cases and benchmarking
77
- 9. Support multiple programming languages when applicable
78
- 10. Follow PEP8 and other relevant style guides
79
- """
80
-
81
- # Create the model with enhanced configuration
82
  generation_config = {
83
- "temperature": 0.35,
84
- "top_p": 0.85,
85
- "top_k": 40,
86
- "max_output_tokens": 8192,
87
  }
88
 
89
  model = genai.GenerativeModel(
90
- model_name="gemini-1.5-pro",
91
  generation_config=generation_config,
92
- system_instruction=SYSTEM_INSTRUCTIONS
93
  )
94
- chat_session = model.start_chat(history=[])
95
 
96
- @retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
97
- def generate_response(user_input):
 
 
 
 
 
 
 
 
 
 
98
  try:
99
- response = chat_session.send_message(user_input)
100
  return response.text
101
  except Exception as e:
102
- logging.error(f"Generation error: {str(e)}")
103
- return f"Error: {e}"
104
 
105
- def optimize_code(code):
106
- """Perform comprehensive code optimization and linting"""
107
- with open("temp_code.py", "w") as file:
108
- file.write(code)
109
-
110
- # Run multiple code quality tools
111
- tools = {
112
- 'pylint': ["pylint", "temp_code.py"],
113
- 'flake8': ["flake8", "temp_code.py"],
114
- 'black': ["black", "--check", "temp_code.py"]
115
- }
116
-
117
- results = {}
118
- for tool, cmd in tools.items():
119
- result = subprocess.run(cmd, capture_output=True, text=True)
120
- results[tool] = {
121
- 'output': result.stdout + result.stderr,
122
- 'status': result.returncode
123
- }
124
-
125
- # Format code with black
126
  try:
127
- formatted_code = black.format_file_contents(
128
- code, mode=black.FileMode()
129
- )
130
- code = formatted_code
131
- except Exception as e:
132
- logging.warning(f"Black formatting failed: {str(e)}")
133
-
134
- os.remove("temp_code.py")
135
- return code, results
136
-
137
- def train_advanced_ml_model(X, y):
138
- """Enhanced ML training with hyperparameter tuning"""
139
- X_train, X_test, y_train, y_test = train_test_split(
140
- X, y, test_size=0.2, stratify=y
141
- )
142
-
143
- param_grid = {
144
- 'RandomForest': {
145
- 'n_estimators': [100, 200],
146
- 'max_depth': [None, 10, 20],
147
- 'min_samples_split': [2, 5]
148
- },
149
- 'GradientBoosting': {
150
- 'n_estimators': [100, 200],
151
- 'learning_rate': [0.1, 0.05],
152
- 'max_depth': [3, 5]
153
- }
154
- }
155
-
156
- models = {
157
- 'RandomForest': RandomForestClassifier(random_state=42),
158
- 'GradientBoosting': GradientBoostingClassifier(random_state=42)
159
- }
160
-
161
- results = {}
162
- for name, model in models.items():
163
- grid_search = GridSearchCV(
164
- model,
165
- param_grid[name],
166
- cv=5,
167
- n_jobs=-1,
168
- scoring='f1_weighted'
169
- )
170
- grid_search.fit(X_train, y_train)
171
-
172
- best_model = grid_search.best_estimator_
173
- y_pred = best_model.predict(X_test)
174
-
175
- results[name] = {
176
- 'best_params': grid_search.best_params_,
177
- 'accuracy': accuracy_score(y_test, y_pred),
178
- 'precision': precision_score(y_test, y_pred, average='weighted'),
179
- 'recall': recall_score(y_test, y_pred, average='weighted'),
180
- 'f1': f1_score(y_test, y_pred, average='weighted'),
181
- 'confusion_matrix': confusion_matrix(y_test, y_pred).tolist()
182
  }
183
-
184
- return results
 
185
 
186
- def handle_error(error):
187
- """Enhanced error handling with logging and notifications"""
188
- st.error(f"An error occurred: {error}")
189
- logging.error(f"User-facing error: {str(error)}")
190
-
191
- # Send notification to admin (example with AWS SNS)
192
  try:
193
- if st.secrets.get("AWS_CREDENTIALS"):
194
- client = boto3.client(
195
- 'sns',
196
- aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"],
197
- aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"],
198
- region_name='us-east-1'
199
- )
200
- client.publish(
201
- TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"],
202
- Message=f"Code Assistant Error: {str(error)}"
203
- )
204
  except Exception as e:
205
- logging.error(f"Error notification failed: {str(e)}")
206
-
207
- def visualize_complex_data(data):
208
- """Enhanced visualization with interactive elements"""
209
- df = pd.DataFrame(data)
210
-
211
- # Create interactive Plotly figures
212
- fig = px.scatter_matrix(df)
213
- fig.update_layout(
214
- title='Interactive Scatter Matrix',
215
- width=1200,
216
- height=800
217
- )
218
-
219
- # Add 3D visualization
220
- if df.shape[1] >= 3:
221
- fig_3d = px.scatter_3d(
222
- df,
223
- x=df.columns[0],
224
- y=df.columns[1],
225
- z=df.columns[2],
226
- title='3D Data Visualization'
227
- )
228
- return [fig, fig_3d]
229
-
230
- return [fig]
231
-
232
- def perform_nlp_analysis(text):
233
- """Enhanced NLP analysis with transformer models"""
234
- # Basic spaCy analysis
235
- nlp = spacy.load("en_core_web_trf")
236
- doc = nlp(text)
237
-
238
- # Transformer-based sentiment analysis
239
- sentiment_analyzer = pipeline(
240
- "sentiment-analysis",
241
- model="distilbert-base-uncased-finetuned-sst-2-english"
242
- )
243
-
244
- # Text summarization
245
- summarizer = pipeline("summarization", model="t5-small")
246
-
247
- return {
248
- 'entities': [(ent.text, ent.label_) for ent in doc.ents],
249
- 'syntax': [(token.text, token.dep_) for token in doc],
250
- 'sentiment': sentiment_analyzer(text),
251
- 'summary': summarizer(text, max_length=50, min_length=25),
252
- 'transformer_embeddings': doc._.trf_data.tensors[-1].tolist()
253
- }
254
-
255
- # Enhanced Streamlit UI Components
256
- st.set_page_config(
257
- page_title="Ultra AI Code Assistant Pro",
258
- page_icon="🚀",
259
- layout="wide",
260
- initial_sidebar_state="expanded"
261
- )
262
-
263
- # Custom CSS for improved styling
264
- st.markdown("""
265
- <style>
266
- .main-container {
267
- background-color: #f8f9fa;
268
- padding: 2rem;
269
- border-radius: 10px;
270
- box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
271
- }
272
- .code-block {
273
- background-color: #1e1e1e;
274
- color: #d4d4d4;
275
- padding: 1rem;
276
- border-radius: 5px;
277
- margin: 1rem 0;
278
- font-family: 'Fira Code', monospace;
279
- }
280
- .stButton>button {
281
- background: linear-gradient(45deg, #4CAF50, #45a049);
282
- color: white;
283
- border: none;
284
- padding: 0.8rem 1.5rem;
285
- border-radius: 25px;
286
- font-weight: bold;
287
- transition: transform 0.2s;
288
- }
289
- .stButton>button:hover {
290
- transform: scale(1.05);
291
- }
292
- .feature-card {
293
- background: white;
294
- padding: 1.5rem;
295
- border-radius: 10px;
296
- margin: 1rem 0;
297
- box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
298
- }
299
- </style>
300
- """, unsafe_allow_html=True)
301
-
302
- # Main UI Layout
303
- st.title("🚀 Ultra AI Code Assistant Pro")
304
- st.markdown("""
305
- <div class="main-container">
306
- <p class="subtitle">Next-Generation AI-Powered Development Environment</p>
307
- </div>
308
- """, unsafe_allow_html=True)
309
-
310
- # Split layout into main content and sidebar
311
- main_col, sidebar_col = st.columns([3, 1])
312
-
313
- with main_col:
314
- task_type = st.selectbox("Select Task Type", [
315
- "Code Generation",
316
- "ML Pipeline Development",
317
- "Data Science Analysis",
318
- "NLP Processing",
319
- "Computer Vision",
320
- "Cloud Deployment",
321
- "Performance Optimization"
322
- ], key='task_type')
323
-
324
- prompt = st.text_area("Describe your task in detail:", height=150,
325
- placeholder="Enter your requirements here...")
326
-
327
- if st.button("Generate Solution", key="main_generate"):
328
- if not prompt.strip():
329
- st.error("Please provide detailed requirements")
330
- else:
331
- with st.spinner("Analyzing requirements and generating solution..."):
332
- try:
333
- # Enhanced processing pipeline
334
- processed_input = process_user_input(prompt)
335
- response = generate_response(f"""
336
- Generate comprehensive solution for: {processed_input.text}
337
- Include:
338
- - Architecture design
339
- - Implementation code
340
- - Testing strategy
341
- - Deployment plan
342
- - Monitoring setup
343
- """)
344
-
345
- if "Error" in response:
346
- handle_error(response)
347
- else:
348
- optimized_code, lint_results = optimize_code(response)
349
 
350
- # Display results in tabs
351
- tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"])
 
 
 
 
 
352
 
353
- with tab1:
354
- st.subheader("Optimized Solution")
355
- st.code(optimized_code, language='python')
356
-
357
- col1, col2 = st.columns(2)
358
- with col1:
359
- st.download_button(
360
- label="Download Code",
361
- data=optimized_code,
362
- file_name="solution.py",
363
- mime="text/python"
364
- )
365
- with col2:
366
- if st.button("Generate Documentation"):
367
- docs = generate_documentation(optimized_code)
368
- st.markdown(docs)
369
 
370
- with tab2:
371
- st.subheader("Code Quality Report")
372
- for tool, result in lint_results.items():
373
- with st.expander(f"{tool.upper()} Results"):
374
- st.code(result['output'])
375
-
376
- st.subheader("Performance Metrics")
377
- # Add performance benchmarking here
378
 
379
- with tab3:
380
- st.subheader("Cloud Deployment Options")
381
- # Add cloud deployment widgets here
382
-
383
- except Exception as e:
384
- handle_error(e)
385
-
386
- with sidebar_col:
387
- st.markdown("## Quick Tools")
388
-
389
- if st.button("Code Review"):
390
- # Implement real-time code review
391
- pass
392
-
393
- if st.button("Security Scan"):
394
- # Implement security scanning
395
- pass
396
-
397
- st.markdown("## Project Stats")
398
- # Add system monitoring
399
- st.write(f"CPU Usage: {psutil.cpu_percent()}%")
400
- st.write(f"Memory Usage: {psutil.virtual_memory().percent}%")
401
-
402
- st.markdown("## Recent Activity")
403
- # Add activity log display
404
- st.write("No recent activity")
405
-
406
- # Additional Features
407
- st.markdown("## Advanced Features")
408
- features = st.columns(3)
409
-
410
- with features[0]:
411
- with st.expander("Live Collaboration"):
412
- st.write("Real-time collaborative coding features")
413
- # Add collaborative editing components
414
-
415
- with features[1]:
416
- with st.expander("API Generator"):
417
- st.write("Generate REST API endpoints from code")
418
- # Add OpenAPI/Swagger generation
419
-
420
- with features[2]:
421
- with st.expander("ML Ops"):
422
- st.write("Machine Learning Operations Dashboard")
423
- # Add model monitoring components
424
-
425
- # System Monitoring Dashboard
426
- st.markdown("## System Health Monitor")
427
- sys_cols = st.columns(4)
428
- sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%")
429
- sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%")
430
- sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%")
431
- sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB")
432
-
433
- # Footer
434
- st.markdown("""
435
- <hr>
436
- <div style="text-align: center; padding: 1rem">
437
- <p>Ultra AI Code Assistant Pro v2.0</p>
438
- <small>Powered by Gemini 1.5 Pro | Secure and Compliant</small>
439
- </div>
440
- """, unsafe_allow_html=True)
441
-
442
- # Additional enhancements not shown here would include:
443
- # - Real-time collaboration features
444
- # - Jupyter notebook integration
445
- # - CI/CD pipeline generation
446
- # - Infrastructure-as-Code templates
447
- # - Advanced profiling and benchmarking
448
- # - Multi-language support
449
- # - Vulnerability scanning integration
450
- # - Automated documentation generation
451
- # - Cloud deployment wizards
452
- # - Team management features
 
6
  import pylint
7
  import pandas as pd
8
  import numpy as np
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.ensemble import RandomForestClassifier
11
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
 
12
  import git
13
  import spacy
 
14
  import boto3
15
  import unittest
 
16
  import sympy as sp
17
+ from scipy.optimize import differential_evolution
18
  import matplotlib.pyplot as plt
19
  import seaborn as sns
 
20
  from tenacity import retry, stop_after_attempt, wait_fixed
 
 
 
 
 
21
  import networkx as nx
 
22
  from scipy.stats import ttest_ind
 
23
  import nltk
24
  from nltk.sentiment import SentimentIntensityAnalyzer
 
25
  from PIL import Image
 
 
 
 
26
  import logging
 
 
 
 
 
 
 
27
 
28
+ # Initialize NLTK and spaCy
29
+ nltk.download('punkt', quiet=True)
30
+ nltk.download('vader_lexicon', quiet=True)
31
+ try:
32
+ nlp = spacy.load("en_core_web_sm")
33
+ except:
34
+ spacy.cli.download("en_core_web_sm")
35
+ nlp = spacy.load("en_core_web_sm")
36
 
37
+ # Configure Gemini
 
 
 
 
 
 
 
 
38
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  generation_config = {
41
+ "temperature": 0.4,
42
+ "top_p": 0.8,
43
+ "top_k": 50,
44
+ "max_output_tokens": 2048,
45
  }
46
 
47
  model = genai.GenerativeModel(
48
+ model_name="gemini-1.5-pro-latest",
49
  generation_config=generation_config,
50
+ system_instruction="You are Ath, an advanced AI coding assistant. Provide secure, efficient code with clear explanations."
51
  )
 
52
 
53
+ # Streamlit UI Configuration
54
+ st.set_page_config(page_title="AI Code Assistant", page_icon="💻", layout="wide")
55
+ st.markdown("""
56
+ <style>
57
+ .main-container {padding: 2rem; border-radius: 10px; background: #f8f9fa;}
58
+ .code-block {background: #1e1e1e; color: #d4d4d4; padding: 1rem; border-radius: 5px;}
59
+ </style>
60
+ """, unsafe_allow_html=True)
61
+
62
+ # Core Functions
63
+ @retry(stop=stop_after_attempt(3), wait=wait_fixed(1))
64
+ def generate_response(prompt):
65
  try:
66
+ response = model.generate_content(prompt)
67
  return response.text
68
  except Exception as e:
69
+ return f"Error: {str(e)}"
 
70
 
71
+ def process_user_input(text):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  try:
73
+ doc = nlp(text)
74
+ return {
75
+ 'tokens': [token.text for token in doc],
76
+ 'entities': [(ent.text, ent.label_) for ent in doc.ents],
77
+ 'sentiment': SentimentIntensityAnalyzer().polarity_scores(text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  }
79
+ except Exception as e:
80
+ st.error(f"NLP Error: {str(e)}")
81
+ return text
82
 
83
+ def optimize_code(code):
 
 
 
 
 
84
  try:
85
+ with open("temp.py", "w") as f:
86
+ f.write(code)
87
+ result = subprocess.run(["pylint", "temp.py"], capture_output=True, text=True)
88
+ os.remove("temp.py")
89
+ return code, result.stdout
 
 
 
 
 
 
90
  except Exception as e:
91
+ return code, f"Optimization Error: {str(e)}"
92
+
93
+ # Streamlit UI Components
94
+ st.title("💻 AI Code Assistant")
95
+ st.markdown("### Generate, Optimize, and Deploy Code")
96
+
97
+ task_type = st.selectbox("Select Task Type", [
98
+ "Code Generation",
99
+ "Data Analysis",
100
+ "NLP Processing",
101
+ "Math Solving"
102
+ ])
103
+
104
+ prompt = st.text_area("Enter your request:", height=150)
105
+
106
+ if st.button("Generate Solution"):
107
+ if not prompt.strip():
108
+ st.error("Please enter a valid prompt")
109
+ else:
110
+ with st.spinner("Processing..."):
111
+ try:
112
+ # Process input
113
+ processed = process_user_input(prompt)
114
+
115
+ # Generate response
116
+ response = generate_response(prompt)
117
+
118
+ # Display results
119
+ with st.expander("Generated Solution", expanded=True):
120
+ if task_type == "Code Generation":
121
+ optimized, lint = optimize_code(response)
122
+ st.code(optimized, language='python')
123
+ st.write("Code Analysis:")
124
+ st.text(lint[:1000]) # Show first 1000 chars
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ elif task_type == "Data Analysis":
127
+ df = pd.DataFrame(np.random.randn(50, 4), columns=['A','B','C','D'])
128
+ st.write("Sample Analysis:")
129
+ st.dataframe(df.describe())
130
+ fig, ax = plt.subplots()
131
+ df.plot.kde(ax=ax)
132
+ st.pyplot(fig)
133
 
134
+ elif task_type == "NLP Processing":
135
+ st.json(processed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
+ elif task_type == "Math Solving":
138
+ solution = sp.solve(prompt)
139
+ st.latex(f"Solution: {solution}")
 
 
 
 
 
140
 
141
+ st.success("Processing complete!")
142
+
143
+ except Exception as e:
144
+ st.error(f"Error: {str(e)}")
145
+
146
+ # Sidebar Utilities
147
+ st.sidebar.header("Tools")
148
+ if st.sidebar.button("Clear Cache"):
149
+ st.cache_data.clear()
150
+ st.success("Cache cleared!")
151
+
152
+ st.sidebar.markdown("""
153
+ ---
154
+ **About**
155
+ AI Code Assistant v2.0
156
+ Powered by Gemini Pro
157
+ [GitHub Repo](https://github.com/your-repo)
158
+ """)