Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import google.generativeai as genai
|
3 |
+
import requests
|
4 |
+
import subprocess
|
5 |
+
import os
|
6 |
+
import pylint
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
10 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
11 |
+
from sklearn.metrics import (accuracy_score, precision_score,
|
12 |
+
recall_score, f1_score, confusion_matrix)
|
13 |
+
import git
|
14 |
+
import spacy
|
15 |
+
from spacy.lang.en import English
|
16 |
+
import boto3
|
17 |
+
import unittest
|
18 |
+
import docker
|
19 |
+
import sympy as sp
|
20 |
+
from scipy.optimize import minimize, differential_evolution
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import seaborn as sns
|
23 |
+
from IPython.display import display
|
24 |
+
from tenacity import retry, stop_after_attempt, wait_fixed
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
import torch.optim as optim
|
28 |
+
from transformers import (AutoTokenizer, AutoModel,
|
29 |
+
pipeline, set_seed)
|
30 |
+
import networkx as nx
|
31 |
+
from sklearn.cluster import KMeans
|
32 |
+
from scipy.stats import ttest_ind
|
33 |
+
from statsmodels.tsa.arima.model import ARIMA
|
34 |
+
import nltk
|
35 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
36 |
+
import cv2
|
37 |
+
from PIL import Image
|
38 |
+
import tensorflow as tf
|
39 |
+
from tensorflow.keras.applications import ResNet50
|
40 |
+
from tensorflow.keras.preprocessing import image
|
41 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
42 |
+
import logging
|
43 |
+
from logging.handlers import RotatingFileHandler
|
44 |
+
import platform
|
45 |
+
import psutil
|
46 |
+
import yaml
|
47 |
+
import json
|
48 |
+
import black
|
49 |
+
import flake8.main.application
|
50 |
+
|
51 |
+
# Initialize NLTK resources
|
52 |
+
nltk.download('punkt')
|
53 |
+
nltk.download('vader_lexicon')
|
54 |
+
|
55 |
+
# Configure logging
|
56 |
+
log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5)
|
57 |
+
logging.basicConfig(
|
58 |
+
handlers=[log_handler],
|
59 |
+
level=logging.INFO,
|
60 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
61 |
+
)
|
62 |
+
|
63 |
+
# Configure the Gemini API
|
64 |
+
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
65 |
+
|
66 |
+
# Enhanced system instructions with security and best practices
|
67 |
+
SYSTEM_INSTRUCTIONS = """
|
68 |
+
You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines:
|
69 |
+
1. Generate secure, efficient, and maintainable code
|
70 |
+
2. Implement industry best practices and design patterns
|
71 |
+
3. Include proper error handling and logging
|
72 |
+
4. Optimize for performance and scalability
|
73 |
+
5. Add detailed documentation and type hints
|
74 |
+
6. Suggest relevant libraries and frameworks
|
75 |
+
7. Consider security implications and vulnerabilities
|
76 |
+
8. Provide test cases and benchmarking
|
77 |
+
9. Support multiple programming languages when applicable
|
78 |
+
10. Follow PEP8 and other relevant style guides
|
79 |
+
"""
|
80 |
+
|
81 |
+
# Create the model with enhanced configuration
|
82 |
+
generation_config = {
|
83 |
+
"temperature": 0.35,
|
84 |
+
"top_p": 0.85,
|
85 |
+
"top_k": 40,
|
86 |
+
"max_output_tokens": 8192,
|
87 |
+
}
|
88 |
+
|
89 |
+
model = genai.GenerativeModel(
|
90 |
+
model_name="gemini-1.5-pro",
|
91 |
+
generation_config=generation_config,
|
92 |
+
system_instruction=SYSTEM_INSTRUCTIONS
|
93 |
+
)
|
94 |
+
chat_session = model.start_chat(history=[])
|
95 |
+
|
96 |
+
@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
|
97 |
+
def generate_response(user_input):
|
98 |
+
try:
|
99 |
+
response = chat_session.send_message(user_input)
|
100 |
+
return response.text
|
101 |
+
except Exception as e:
|
102 |
+
logging.error(f"Generation error: {str(e)}")
|
103 |
+
return f"Error: {e}"
|
104 |
+
|
105 |
+
def optimize_code(code):
|
106 |
+
"""Perform comprehensive code optimization and linting"""
|
107 |
+
with open("temp_code.py", "w") as file:
|
108 |
+
file.write(code)
|
109 |
+
|
110 |
+
# Run multiple code quality tools
|
111 |
+
tools = {
|
112 |
+
'pylint': ["pylint", "temp_code.py"],
|
113 |
+
'flake8': ["flake8", "temp_code.py"],
|
114 |
+
'black': ["black", "--check", "temp_code.py"]
|
115 |
+
}
|
116 |
+
|
117 |
+
results = {}
|
118 |
+
for tool, cmd in tools.items():
|
119 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
120 |
+
results[tool] = {
|
121 |
+
'output': result.stdout + result.stderr,
|
122 |
+
'status': result.returncode
|
123 |
+
}
|
124 |
+
|
125 |
+
# Format code with black
|
126 |
+
try:
|
127 |
+
formatted_code = black.format_file_contents(
|
128 |
+
code, mode=black.FileMode()
|
129 |
+
)
|
130 |
+
code = formatted_code
|
131 |
+
except Exception as e:
|
132 |
+
logging.warning(f"Black formatting failed: {str(e)}")
|
133 |
+
|
134 |
+
os.remove("temp_code.py")
|
135 |
+
return code, results
|
136 |
+
|
137 |
+
def train_advanced_ml_model(X, y):
|
138 |
+
"""Enhanced ML training with hyperparameter tuning"""
|
139 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
140 |
+
X, y, test_size=0.2, stratify=y
|
141 |
+
)
|
142 |
+
|
143 |
+
param_grid = {
|
144 |
+
'RandomForest': {
|
145 |
+
'n_estimators': [100, 200],
|
146 |
+
'max_depth': [None, 10, 20],
|
147 |
+
'min_samples_split': [2, 5]
|
148 |
+
},
|
149 |
+
'GradientBoosting': {
|
150 |
+
'n_estimators': [100, 200],
|
151 |
+
'learning_rate': [0.1, 0.05],
|
152 |
+
'max_depth': [3, 5]
|
153 |
+
}
|
154 |
+
}
|
155 |
+
|
156 |
+
models = {
|
157 |
+
'RandomForest': RandomForestClassifier(random_state=42),
|
158 |
+
'GradientBoosting': GradientBoostingClassifier(random_state=42)
|
159 |
+
}
|
160 |
+
|
161 |
+
results = {}
|
162 |
+
for name, model in models.items():
|
163 |
+
grid_search = GridSearchCV(
|
164 |
+
model,
|
165 |
+
param_grid[name],
|
166 |
+
cv=5,
|
167 |
+
n_jobs=-1,
|
168 |
+
scoring='f1_weighted'
|
169 |
+
)
|
170 |
+
grid_search.fit(X_train, y_train)
|
171 |
+
|
172 |
+
best_model = grid_search.best_estimator_
|
173 |
+
y_pred = best_model.predict(X_test)
|
174 |
+
|
175 |
+
results[name] = {
|
176 |
+
'best_params': grid_search.best_params_,
|
177 |
+
'accuracy': accuracy_score(y_test, y_pred),
|
178 |
+
'precision': precision_score(y_test, y_pred, average='weighted'),
|
179 |
+
'recall': recall_score(y_test, y_pred, average='weighted'),
|
180 |
+
'f1': f1_score(y_test, y_pred, average='weighted'),
|
181 |
+
'confusion_matrix': confusion_matrix(y_test, y_pred).tolist()
|
182 |
+
}
|
183 |
+
|
184 |
+
return results
|
185 |
+
|
186 |
+
def handle_error(error):
|
187 |
+
"""Enhanced error handling with logging and notifications"""
|
188 |
+
st.error(f"An error occurred: {error}")
|
189 |
+
logging.error(f"User-facing error: {str(error)}")
|
190 |
+
|
191 |
+
# Send notification to admin (example with AWS SNS)
|
192 |
+
try:
|
193 |
+
if st.secrets.get("AWS_CREDENTIALS"):
|
194 |
+
client = boto3.client(
|
195 |
+
'sns',
|
196 |
+
aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"],
|
197 |
+
aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"],
|
198 |
+
region_name='us-east-1'
|
199 |
+
)
|
200 |
+
client.publish(
|
201 |
+
TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"],
|
202 |
+
Message=f"Code Assistant Error: {str(error)}"
|
203 |
+
)
|
204 |
+
except Exception as e:
|
205 |
+
logging.error(f"Error notification failed: {str(e)}")
|
206 |
+
|
207 |
+
def visualize_complex_data(data):
|
208 |
+
"""Enhanced visualization with interactive elements"""
|
209 |
+
df = pd.DataFrame(data)
|
210 |
+
|
211 |
+
# Create interactive Plotly figures
|
212 |
+
fig = px.scatter_matrix(df)
|
213 |
+
fig.update_layout(
|
214 |
+
title='Interactive Scatter Matrix',
|
215 |
+
width=1200,
|
216 |
+
height=800
|
217 |
+
)
|
218 |
+
|
219 |
+
# Add 3D visualization
|
220 |
+
if df.shape[1] >= 3:
|
221 |
+
fig_3d = px.scatter_3d(
|
222 |
+
df,
|
223 |
+
x=df.columns[0],
|
224 |
+
y=df.columns[1],
|
225 |
+
z=df.columns[2],
|
226 |
+
title='3D Data Visualization'
|
227 |
+
)
|
228 |
+
return [fig, fig_3d]
|
229 |
+
|
230 |
+
return [fig]
|
231 |
+
|
232 |
+
def perform_nlp_analysis(text):
|
233 |
+
"""Enhanced NLP analysis with transformer models"""
|
234 |
+
# Basic spaCy analysis
|
235 |
+
nlp = spacy.load("en_core_web_trf")
|
236 |
+
doc = nlp(text)
|
237 |
+
|
238 |
+
# Transformer-based sentiment analysis
|
239 |
+
sentiment_analyzer = pipeline(
|
240 |
+
"sentiment-analysis",
|
241 |
+
model="distilbert-base-uncased-finetuned-sst-2-english"
|
242 |
+
)
|
243 |
+
|
244 |
+
# Text summarization
|
245 |
+
summarizer = pipeline("summarization", model="t5-small")
|
246 |
+
|
247 |
+
return {
|
248 |
+
'entities': [(ent.text, ent.label_) for ent in doc.ents],
|
249 |
+
'syntax': [(token.text, token.dep_) for token in doc],
|
250 |
+
'sentiment': sentiment_analyzer(text),
|
251 |
+
'summary': summarizer(text, max_length=50, min_length=25),
|
252 |
+
'transformer_embeddings': doc._.trf_data.tensors[-1].tolist()
|
253 |
+
}
|
254 |
+
|
255 |
+
# Enhanced Streamlit UI Components
|
256 |
+
st.set_page_config(
|
257 |
+
page_title="Ultra AI Code Assistant Pro",
|
258 |
+
page_icon="π",
|
259 |
+
layout="wide",
|
260 |
+
initial_sidebar_state="expanded"
|
261 |
+
)
|
262 |
+
|
263 |
+
# Custom CSS for improved styling
|
264 |
+
st.markdown("""
|
265 |
+
<style>
|
266 |
+
.main-container {
|
267 |
+
background-color: #f8f9fa;
|
268 |
+
padding: 2rem;
|
269 |
+
border-radius: 10px;
|
270 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
271 |
+
}
|
272 |
+
.code-block {
|
273 |
+
background-color: #1e1e1e;
|
274 |
+
color: #d4d4d4;
|
275 |
+
padding: 1rem;
|
276 |
+
border-radius: 5px;
|
277 |
+
margin: 1rem 0;
|
278 |
+
font-family: 'Fira Code', monospace;
|
279 |
+
}
|
280 |
+
.stButton>button {
|
281 |
+
background: linear-gradient(45deg, #4CAF50, #45a049);
|
282 |
+
color: white;
|
283 |
+
border: none;
|
284 |
+
padding: 0.8rem 1.5rem;
|
285 |
+
border-radius: 25px;
|
286 |
+
font-weight: bold;
|
287 |
+
transition: transform 0.2s;
|
288 |
+
}
|
289 |
+
.stButton>button:hover {
|
290 |
+
transform: scale(1.05);
|
291 |
+
}
|
292 |
+
.feature-card {
|
293 |
+
background: white;
|
294 |
+
padding: 1.5rem;
|
295 |
+
border-radius: 10px;
|
296 |
+
margin: 1rem 0;
|
297 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
298 |
+
}
|
299 |
+
</style>
|
300 |
+
""", unsafe_allow_html=True)
|
301 |
+
|
302 |
+
# Main UI Layout
|
303 |
+
st.title("π Ultra AI Code Assistant Pro")
|
304 |
+
st.markdown("""
|
305 |
+
<div class="main-container">
|
306 |
+
<p class="subtitle">Next-Generation AI-Powered Development Environment</p>
|
307 |
+
</div>
|
308 |
+
""", unsafe_allow_html=True)
|
309 |
+
|
310 |
+
# Split layout into main content and sidebar
|
311 |
+
main_col, sidebar_col = st.columns([3, 1])
|
312 |
+
|
313 |
+
with main_col:
|
314 |
+
task_type = st.selectbox("Select Task Type", [
|
315 |
+
"Code Generation",
|
316 |
+
"ML Pipeline Development",
|
317 |
+
"Data Science Analysis",
|
318 |
+
"NLP Processing",
|
319 |
+
"Computer Vision",
|
320 |
+
"Cloud Deployment",
|
321 |
+
"Performance Optimization"
|
322 |
+
], key='task_type')
|
323 |
+
|
324 |
+
prompt = st.text_area("Describe your task in detail:", height=150,
|
325 |
+
placeholder="Enter your requirements here...")
|
326 |
+
|
327 |
+
if st.button("Generate Solution", key="main_generate"):
|
328 |
+
if not prompt.strip():
|
329 |
+
st.error("Please provide detailed requirements")
|
330 |
+
else:
|
331 |
+
with st.spinner("Analyzing requirements and generating solution..."):
|
332 |
+
try:
|
333 |
+
# Enhanced processing pipeline
|
334 |
+
processed_input = process_user_input(prompt)
|
335 |
+
response = generate_response(f"""
|
336 |
+
Generate comprehensive solution for: {processed_input.text}
|
337 |
+
Include:
|
338 |
+
- Architecture design
|
339 |
+
- Implementation code
|
340 |
+
- Testing strategy
|
341 |
+
- Deployment plan
|
342 |
+
- Monitoring setup
|
343 |
+
""")
|
344 |
+
|
345 |
+
if "Error" in response:
|
346 |
+
handle_error(response)
|
347 |
+
else:
|
348 |
+
optimized_code, lint_results = optimize_code(response)
|
349 |
+
|
350 |
+
# Display results in tabs
|
351 |
+
tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"])
|
352 |
+
|
353 |
+
with tab1:
|
354 |
+
st.subheader("Optimized Solution")
|
355 |
+
st.code(optimized_code, language='python')
|
356 |
+
|
357 |
+
col1, col2 = st.columns(2)
|
358 |
+
with col1:
|
359 |
+
st.download_button(
|
360 |
+
label="Download Code",
|
361 |
+
data=optimized_code,
|
362 |
+
file_name="solution.py",
|
363 |
+
mime="text/python"
|
364 |
+
)
|
365 |
+
with col2:
|
366 |
+
if st.button("Generate Documentation"):
|
367 |
+
docs = generate_documentation(optimized_code)
|
368 |
+
st.markdown(docs)
|
369 |
+
|
370 |
+
with tab2:
|
371 |
+
st.subheader("Code Quality Report")
|
372 |
+
for tool, result in lint_results.items():
|
373 |
+
with st.expander(f"{tool.upper()} Results"):
|
374 |
+
st.code(result['output'])
|
375 |
+
|
376 |
+
st.subheader("Performance Metrics")
|
377 |
+
# Add performance benchmarking here
|
378 |
+
|
379 |
+
with tab3:
|
380 |
+
st.subheader("Cloud Deployment Options")
|
381 |
+
# Add cloud deployment widgets here
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
handle_error(e)
|
385 |
+
|
386 |
+
with sidebar_col:
|
387 |
+
st.markdown("## Quick Tools")
|
388 |
+
|
389 |
+
if st.button("Code Review"):
|
390 |
+
# Implement real-time code review
|
391 |
+
pass
|
392 |
+
|
393 |
+
if st.button("Security Scan"):
|
394 |
+
# Implement security scanning
|
395 |
+
pass
|
396 |
+
|
397 |
+
st.markdown("## Project Stats")
|
398 |
+
# Add system monitoring
|
399 |
+
st.write(f"CPU Usage: {psutil.cpu_percent()}%")
|
400 |
+
st.write(f"Memory Usage: {psutil.virtual_memory().percent}%")
|
401 |
+
|
402 |
+
st.markdown("## Recent Activity")
|
403 |
+
# Add activity log display
|
404 |
+
st.write("No recent activity")
|
405 |
+
|
406 |
+
# Additional Features
|
407 |
+
st.markdown("## Advanced Features")
|
408 |
+
features = st.columns(3)
|
409 |
+
|
410 |
+
with features[0]:
|
411 |
+
with st.expander("Live Collaboration"):
|
412 |
+
st.write("Real-time collaborative coding features")
|
413 |
+
# Add collaborative editing components
|
414 |
+
|
415 |
+
with features[1]:
|
416 |
+
with st.expander("API Generator"):
|
417 |
+
st.write("Generate REST API endpoints from code")
|
418 |
+
# Add OpenAPI/Swagger generation
|
419 |
+
|
420 |
+
with features[2]:
|
421 |
+
with st.expander("ML Ops"):
|
422 |
+
st.write("Machine Learning Operations Dashboard")
|
423 |
+
# Add model monitoring components
|
424 |
+
|
425 |
+
# System Monitoring Dashboard
|
426 |
+
st.markdown("## System Health Monitor")
|
427 |
+
sys_cols = st.columns(4)
|
428 |
+
sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%")
|
429 |
+
sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%")
|
430 |
+
sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%")
|
431 |
+
sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB")
|
432 |
+
|
433 |
+
# Footer
|
434 |
+
st.markdown("""
|
435 |
+
<hr>
|
436 |
+
<div style="text-align: center; padding: 1rem">
|
437 |
+
<p>Ultra AI Code Assistant Pro v2.0</p>
|
438 |
+
<small>Powered by Gemini 1.5 Pro | Secure and Compliant</small>
|
439 |
+
</div>
|
440 |
+
""", unsafe_allow_html=True)
|
441 |
+
|
442 |
+
# Additional enhancements not shown here would include:
|
443 |
+
# - Real-time collaboration features
|
444 |
+
# - Jupyter notebook integration
|
445 |
+
# - CI/CD pipeline generation
|
446 |
+
# - Infrastructure-as-Code templates
|
447 |
+
# - Advanced profiling and benchmarking
|
448 |
+
# - Multi-language support
|
449 |
+
# - Vulnerability scanning integration
|
450 |
+
# - Automated documentation generation
|
451 |
+
# - Cloud deployment wizards
|
452 |
+
# - Team management features
|