Athspi commited on
Commit
530c965
Β·
verified Β·
1 Parent(s): e25c1b9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +452 -0
app.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import google.generativeai as genai
3
+ import requests
4
+ import subprocess
5
+ import os
6
+ import pylint
7
+ import pandas as pd
8
+ import numpy as np
9
+ from sklearn.model_selection import train_test_split, GridSearchCV
10
+ from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
11
+ from sklearn.metrics import (accuracy_score, precision_score,
12
+ recall_score, f1_score, confusion_matrix)
13
+ import git
14
+ import spacy
15
+ from spacy.lang.en import English
16
+ import boto3
17
+ import unittest
18
+ import docker
19
+ import sympy as sp
20
+ from scipy.optimize import minimize, differential_evolution
21
+ import matplotlib.pyplot as plt
22
+ import seaborn as sns
23
+ from IPython.display import display
24
+ from tenacity import retry, stop_after_attempt, wait_fixed
25
+ import torch
26
+ import torch.nn as nn
27
+ import torch.optim as optim
28
+ from transformers import (AutoTokenizer, AutoModel,
29
+ pipeline, set_seed)
30
+ import networkx as nx
31
+ from sklearn.cluster import KMeans
32
+ from scipy.stats import ttest_ind
33
+ from statsmodels.tsa.arima.model import ARIMA
34
+ import nltk
35
+ from nltk.sentiment import SentimentIntensityAnalyzer
36
+ import cv2
37
+ from PIL import Image
38
+ import tensorflow as tf
39
+ from tensorflow.keras.applications import ResNet50
40
+ from tensorflow.keras.preprocessing import image
41
+ from tensorflow.keras.applications.resnet50 import preprocess_input
42
+ import logging
43
+ from logging.handlers import RotatingFileHandler
44
+ import platform
45
+ import psutil
46
+ import yaml
47
+ import json
48
+ import black
49
+ import flake8.main.application
50
+
51
+ # Initialize NLTK resources
52
+ nltk.download('punkt')
53
+ nltk.download('vader_lexicon')
54
+
55
+ # Configure logging
56
+ log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5)
57
+ logging.basicConfig(
58
+ handlers=[log_handler],
59
+ level=logging.INFO,
60
+ format='%(asctime)s - %(levelname)s - %(message)s'
61
+ )
62
+
63
+ # Configure the Gemini API
64
+ genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
65
+
66
+ # Enhanced system instructions with security and best practices
67
+ SYSTEM_INSTRUCTIONS = """
68
+ You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines:
69
+ 1. Generate secure, efficient, and maintainable code
70
+ 2. Implement industry best practices and design patterns
71
+ 3. Include proper error handling and logging
72
+ 4. Optimize for performance and scalability
73
+ 5. Add detailed documentation and type hints
74
+ 6. Suggest relevant libraries and frameworks
75
+ 7. Consider security implications and vulnerabilities
76
+ 8. Provide test cases and benchmarking
77
+ 9. Support multiple programming languages when applicable
78
+ 10. Follow PEP8 and other relevant style guides
79
+ """
80
+
81
+ # Create the model with enhanced configuration
82
+ generation_config = {
83
+ "temperature": 0.35,
84
+ "top_p": 0.85,
85
+ "top_k": 40,
86
+ "max_output_tokens": 8192,
87
+ }
88
+
89
+ model = genai.GenerativeModel(
90
+ model_name="gemini-1.5-pro",
91
+ generation_config=generation_config,
92
+ system_instruction=SYSTEM_INSTRUCTIONS
93
+ )
94
+ chat_session = model.start_chat(history=[])
95
+
96
+ @retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
97
+ def generate_response(user_input):
98
+ try:
99
+ response = chat_session.send_message(user_input)
100
+ return response.text
101
+ except Exception as e:
102
+ logging.error(f"Generation error: {str(e)}")
103
+ return f"Error: {e}"
104
+
105
+ def optimize_code(code):
106
+ """Perform comprehensive code optimization and linting"""
107
+ with open("temp_code.py", "w") as file:
108
+ file.write(code)
109
+
110
+ # Run multiple code quality tools
111
+ tools = {
112
+ 'pylint': ["pylint", "temp_code.py"],
113
+ 'flake8': ["flake8", "temp_code.py"],
114
+ 'black': ["black", "--check", "temp_code.py"]
115
+ }
116
+
117
+ results = {}
118
+ for tool, cmd in tools.items():
119
+ result = subprocess.run(cmd, capture_output=True, text=True)
120
+ results[tool] = {
121
+ 'output': result.stdout + result.stderr,
122
+ 'status': result.returncode
123
+ }
124
+
125
+ # Format code with black
126
+ try:
127
+ formatted_code = black.format_file_contents(
128
+ code, mode=black.FileMode()
129
+ )
130
+ code = formatted_code
131
+ except Exception as e:
132
+ logging.warning(f"Black formatting failed: {str(e)}")
133
+
134
+ os.remove("temp_code.py")
135
+ return code, results
136
+
137
+ def train_advanced_ml_model(X, y):
138
+ """Enhanced ML training with hyperparameter tuning"""
139
+ X_train, X_test, y_train, y_test = train_test_split(
140
+ X, y, test_size=0.2, stratify=y
141
+ )
142
+
143
+ param_grid = {
144
+ 'RandomForest': {
145
+ 'n_estimators': [100, 200],
146
+ 'max_depth': [None, 10, 20],
147
+ 'min_samples_split': [2, 5]
148
+ },
149
+ 'GradientBoosting': {
150
+ 'n_estimators': [100, 200],
151
+ 'learning_rate': [0.1, 0.05],
152
+ 'max_depth': [3, 5]
153
+ }
154
+ }
155
+
156
+ models = {
157
+ 'RandomForest': RandomForestClassifier(random_state=42),
158
+ 'GradientBoosting': GradientBoostingClassifier(random_state=42)
159
+ }
160
+
161
+ results = {}
162
+ for name, model in models.items():
163
+ grid_search = GridSearchCV(
164
+ model,
165
+ param_grid[name],
166
+ cv=5,
167
+ n_jobs=-1,
168
+ scoring='f1_weighted'
169
+ )
170
+ grid_search.fit(X_train, y_train)
171
+
172
+ best_model = grid_search.best_estimator_
173
+ y_pred = best_model.predict(X_test)
174
+
175
+ results[name] = {
176
+ 'best_params': grid_search.best_params_,
177
+ 'accuracy': accuracy_score(y_test, y_pred),
178
+ 'precision': precision_score(y_test, y_pred, average='weighted'),
179
+ 'recall': recall_score(y_test, y_pred, average='weighted'),
180
+ 'f1': f1_score(y_test, y_pred, average='weighted'),
181
+ 'confusion_matrix': confusion_matrix(y_test, y_pred).tolist()
182
+ }
183
+
184
+ return results
185
+
186
+ def handle_error(error):
187
+ """Enhanced error handling with logging and notifications"""
188
+ st.error(f"An error occurred: {error}")
189
+ logging.error(f"User-facing error: {str(error)}")
190
+
191
+ # Send notification to admin (example with AWS SNS)
192
+ try:
193
+ if st.secrets.get("AWS_CREDENTIALS"):
194
+ client = boto3.client(
195
+ 'sns',
196
+ aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"],
197
+ aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"],
198
+ region_name='us-east-1'
199
+ )
200
+ client.publish(
201
+ TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"],
202
+ Message=f"Code Assistant Error: {str(error)}"
203
+ )
204
+ except Exception as e:
205
+ logging.error(f"Error notification failed: {str(e)}")
206
+
207
+ def visualize_complex_data(data):
208
+ """Enhanced visualization with interactive elements"""
209
+ df = pd.DataFrame(data)
210
+
211
+ # Create interactive Plotly figures
212
+ fig = px.scatter_matrix(df)
213
+ fig.update_layout(
214
+ title='Interactive Scatter Matrix',
215
+ width=1200,
216
+ height=800
217
+ )
218
+
219
+ # Add 3D visualization
220
+ if df.shape[1] >= 3:
221
+ fig_3d = px.scatter_3d(
222
+ df,
223
+ x=df.columns[0],
224
+ y=df.columns[1],
225
+ z=df.columns[2],
226
+ title='3D Data Visualization'
227
+ )
228
+ return [fig, fig_3d]
229
+
230
+ return [fig]
231
+
232
+ def perform_nlp_analysis(text):
233
+ """Enhanced NLP analysis with transformer models"""
234
+ # Basic spaCy analysis
235
+ nlp = spacy.load("en_core_web_trf")
236
+ doc = nlp(text)
237
+
238
+ # Transformer-based sentiment analysis
239
+ sentiment_analyzer = pipeline(
240
+ "sentiment-analysis",
241
+ model="distilbert-base-uncased-finetuned-sst-2-english"
242
+ )
243
+
244
+ # Text summarization
245
+ summarizer = pipeline("summarization", model="t5-small")
246
+
247
+ return {
248
+ 'entities': [(ent.text, ent.label_) for ent in doc.ents],
249
+ 'syntax': [(token.text, token.dep_) for token in doc],
250
+ 'sentiment': sentiment_analyzer(text),
251
+ 'summary': summarizer(text, max_length=50, min_length=25),
252
+ 'transformer_embeddings': doc._.trf_data.tensors[-1].tolist()
253
+ }
254
+
255
+ # Enhanced Streamlit UI Components
256
+ st.set_page_config(
257
+ page_title="Ultra AI Code Assistant Pro",
258
+ page_icon="πŸš€",
259
+ layout="wide",
260
+ initial_sidebar_state="expanded"
261
+ )
262
+
263
+ # Custom CSS for improved styling
264
+ st.markdown("""
265
+ <style>
266
+ .main-container {
267
+ background-color: #f8f9fa;
268
+ padding: 2rem;
269
+ border-radius: 10px;
270
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
271
+ }
272
+ .code-block {
273
+ background-color: #1e1e1e;
274
+ color: #d4d4d4;
275
+ padding: 1rem;
276
+ border-radius: 5px;
277
+ margin: 1rem 0;
278
+ font-family: 'Fira Code', monospace;
279
+ }
280
+ .stButton>button {
281
+ background: linear-gradient(45deg, #4CAF50, #45a049);
282
+ color: white;
283
+ border: none;
284
+ padding: 0.8rem 1.5rem;
285
+ border-radius: 25px;
286
+ font-weight: bold;
287
+ transition: transform 0.2s;
288
+ }
289
+ .stButton>button:hover {
290
+ transform: scale(1.05);
291
+ }
292
+ .feature-card {
293
+ background: white;
294
+ padding: 1.5rem;
295
+ border-radius: 10px;
296
+ margin: 1rem 0;
297
+ box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
298
+ }
299
+ </style>
300
+ """, unsafe_allow_html=True)
301
+
302
+ # Main UI Layout
303
+ st.title("πŸš€ Ultra AI Code Assistant Pro")
304
+ st.markdown("""
305
+ <div class="main-container">
306
+ <p class="subtitle">Next-Generation AI-Powered Development Environment</p>
307
+ </div>
308
+ """, unsafe_allow_html=True)
309
+
310
+ # Split layout into main content and sidebar
311
+ main_col, sidebar_col = st.columns([3, 1])
312
+
313
+ with main_col:
314
+ task_type = st.selectbox("Select Task Type", [
315
+ "Code Generation",
316
+ "ML Pipeline Development",
317
+ "Data Science Analysis",
318
+ "NLP Processing",
319
+ "Computer Vision",
320
+ "Cloud Deployment",
321
+ "Performance Optimization"
322
+ ], key='task_type')
323
+
324
+ prompt = st.text_area("Describe your task in detail:", height=150,
325
+ placeholder="Enter your requirements here...")
326
+
327
+ if st.button("Generate Solution", key="main_generate"):
328
+ if not prompt.strip():
329
+ st.error("Please provide detailed requirements")
330
+ else:
331
+ with st.spinner("Analyzing requirements and generating solution..."):
332
+ try:
333
+ # Enhanced processing pipeline
334
+ processed_input = process_user_input(prompt)
335
+ response = generate_response(f"""
336
+ Generate comprehensive solution for: {processed_input.text}
337
+ Include:
338
+ - Architecture design
339
+ - Implementation code
340
+ - Testing strategy
341
+ - Deployment plan
342
+ - Monitoring setup
343
+ """)
344
+
345
+ if "Error" in response:
346
+ handle_error(response)
347
+ else:
348
+ optimized_code, lint_results = optimize_code(response)
349
+
350
+ # Display results in tabs
351
+ tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"])
352
+
353
+ with tab1:
354
+ st.subheader("Optimized Solution")
355
+ st.code(optimized_code, language='python')
356
+
357
+ col1, col2 = st.columns(2)
358
+ with col1:
359
+ st.download_button(
360
+ label="Download Code",
361
+ data=optimized_code,
362
+ file_name="solution.py",
363
+ mime="text/python"
364
+ )
365
+ with col2:
366
+ if st.button("Generate Documentation"):
367
+ docs = generate_documentation(optimized_code)
368
+ st.markdown(docs)
369
+
370
+ with tab2:
371
+ st.subheader("Code Quality Report")
372
+ for tool, result in lint_results.items():
373
+ with st.expander(f"{tool.upper()} Results"):
374
+ st.code(result['output'])
375
+
376
+ st.subheader("Performance Metrics")
377
+ # Add performance benchmarking here
378
+
379
+ with tab3:
380
+ st.subheader("Cloud Deployment Options")
381
+ # Add cloud deployment widgets here
382
+
383
+ except Exception as e:
384
+ handle_error(e)
385
+
386
+ with sidebar_col:
387
+ st.markdown("## Quick Tools")
388
+
389
+ if st.button("Code Review"):
390
+ # Implement real-time code review
391
+ pass
392
+
393
+ if st.button("Security Scan"):
394
+ # Implement security scanning
395
+ pass
396
+
397
+ st.markdown("## Project Stats")
398
+ # Add system monitoring
399
+ st.write(f"CPU Usage: {psutil.cpu_percent()}%")
400
+ st.write(f"Memory Usage: {psutil.virtual_memory().percent}%")
401
+
402
+ st.markdown("## Recent Activity")
403
+ # Add activity log display
404
+ st.write("No recent activity")
405
+
406
+ # Additional Features
407
+ st.markdown("## Advanced Features")
408
+ features = st.columns(3)
409
+
410
+ with features[0]:
411
+ with st.expander("Live Collaboration"):
412
+ st.write("Real-time collaborative coding features")
413
+ # Add collaborative editing components
414
+
415
+ with features[1]:
416
+ with st.expander("API Generator"):
417
+ st.write("Generate REST API endpoints from code")
418
+ # Add OpenAPI/Swagger generation
419
+
420
+ with features[2]:
421
+ with st.expander("ML Ops"):
422
+ st.write("Machine Learning Operations Dashboard")
423
+ # Add model monitoring components
424
+
425
+ # System Monitoring Dashboard
426
+ st.markdown("## System Health Monitor")
427
+ sys_cols = st.columns(4)
428
+ sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%")
429
+ sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%")
430
+ sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%")
431
+ sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB")
432
+
433
+ # Footer
434
+ st.markdown("""
435
+ <hr>
436
+ <div style="text-align: center; padding: 1rem">
437
+ <p>Ultra AI Code Assistant Pro v2.0</p>
438
+ <small>Powered by Gemini 1.5 Pro | Secure and Compliant</small>
439
+ </div>
440
+ """, unsafe_allow_html=True)
441
+
442
+ # Additional enhancements not shown here would include:
443
+ # - Real-time collaboration features
444
+ # - Jupyter notebook integration
445
+ # - CI/CD pipeline generation
446
+ # - Infrastructure-as-Code templates
447
+ # - Advanced profiling and benchmarking
448
+ # - Multi-language support
449
+ # - Vulnerability scanning integration
450
+ # - Automated documentation generation
451
+ # - Cloud deployment wizards
452
+ # - Team management features