import streamlit as st import google.generativeai as genai import requests import subprocess import os import pylint import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import (accuracy_score, precision_score, recall_score, f1_score, confusion_matrix) import git import spacy from spacy.lang.en import English import boto3 import unittest import docker import sympy as sp from scipy.optimize import minimize, differential_evolution import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display from tenacity import retry, stop_after_attempt, wait_fixed import torch import torch.nn as nn import torch.optim as optim from transformers import (AutoTokenizer, AutoModel, pipeline, set_seed) import networkx as nx from sklearn.cluster import KMeans from scipy.stats import ttest_ind from statsmodels.tsa.arima.model import ARIMA import nltk from nltk.sentiment import SentimentIntensityAnalyzer import cv2 from PIL import Image import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input import logging from logging.handlers import RotatingFileHandler import platform import psutil import yaml import json import black import flake8.main.application # Initialize NLTK resources nltk.download('punkt') nltk.download('vader_lexicon') # Configure logging log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5) logging.basicConfig( handlers=[log_handler], level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Configure the Gemini API genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) # Enhanced system instructions with security and best practices SYSTEM_INSTRUCTIONS = """ You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines: 1. Generate secure, efficient, and maintainable code 2. Implement industry best practices and design patterns 3. Include proper error handling and logging 4. Optimize for performance and scalability 5. Add detailed documentation and type hints 6. Suggest relevant libraries and frameworks 7. Consider security implications and vulnerabilities 8. Provide test cases and benchmarking 9. Support multiple programming languages when applicable 10. Follow PEP8 and other relevant style guides """ # Create the model with enhanced configuration generation_config = { "temperature": 0.35, "top_p": 0.85, "top_k": 40, "max_output_tokens": 8192, } model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, system_instruction=SYSTEM_INSTRUCTIONS ) chat_session = model.start_chat(history=[]) @retry(stop=stop_after_attempt(5), wait=wait_fixed(2)) def generate_response(user_input): try: response = chat_session.send_message(user_input) return response.text except Exception as e: logging.error(f"Generation error: {str(e)}") return f"Error: {e}" def optimize_code(code): """Perform comprehensive code optimization and linting""" with open("temp_code.py", "w") as file: file.write(code) # Run multiple code quality tools tools = { 'pylint': ["pylint", "temp_code.py"], 'flake8': ["flake8", "temp_code.py"], 'black': ["black", "--check", "temp_code.py"] } results = {} for tool, cmd in tools.items(): result = subprocess.run(cmd, capture_output=True, text=True) results[tool] = { 'output': result.stdout + result.stderr, 'status': result.returncode } # Format code with black try: formatted_code = black.format_file_contents( code, mode=black.FileMode() ) code = formatted_code except Exception as e: logging.warning(f"Black formatting failed: {str(e)}") os.remove("temp_code.py") return code, results def train_advanced_ml_model(X, y): """Enhanced ML training with hyperparameter tuning""" X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y ) param_grid = { 'RandomForest': { 'n_estimators': [100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5] }, 'GradientBoosting': { 'n_estimators': [100, 200], 'learning_rate': [0.1, 0.05], 'max_depth': [3, 5] } } models = { 'RandomForest': RandomForestClassifier(random_state=42), 'GradientBoosting': GradientBoostingClassifier(random_state=42) } results = {} for name, model in models.items(): grid_search = GridSearchCV( model, param_grid[name], cv=5, n_jobs=-1, scoring='f1_weighted' ) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ y_pred = best_model.predict(X_test) results[name] = { 'best_params': grid_search.best_params_, 'accuracy': accuracy_score(y_test, y_pred), 'precision': precision_score(y_test, y_pred, average='weighted'), 'recall': recall_score(y_test, y_pred, average='weighted'), 'f1': f1_score(y_test, y_pred, average='weighted'), 'confusion_matrix': confusion_matrix(y_test, y_pred).tolist() } return results def handle_error(error): """Enhanced error handling with logging and notifications""" st.error(f"An error occurred: {error}") logging.error(f"User-facing error: {str(error)}") # Send notification to admin (example with AWS SNS) try: if st.secrets.get("AWS_CREDENTIALS"): client = boto3.client( 'sns', aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"], aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"], region_name='us-east-1' ) client.publish( TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"], Message=f"Code Assistant Error: {str(error)}" ) except Exception as e: logging.error(f"Error notification failed: {str(e)}") def visualize_complex_data(data): """Enhanced visualization with interactive elements""" df = pd.DataFrame(data) # Create interactive Plotly figures fig = px.scatter_matrix(df) fig.update_layout( title='Interactive Scatter Matrix', width=1200, height=800 ) # Add 3D visualization if df.shape[1] >= 3: fig_3d = px.scatter_3d( df, x=df.columns[0], y=df.columns[1], z=df.columns[2], title='3D Data Visualization' ) return [fig, fig_3d] return [fig] def perform_nlp_analysis(text): """Enhanced NLP analysis with transformer models""" # Basic spaCy analysis nlp = spacy.load("en_core_web_trf") doc = nlp(text) # Transformer-based sentiment analysis sentiment_analyzer = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english" ) # Text summarization summarizer = pipeline("summarization", model="t5-small") return { 'entities': [(ent.text, ent.label_) for ent in doc.ents], 'syntax': [(token.text, token.dep_) for token in doc], 'sentiment': sentiment_analyzer(text), 'summary': summarizer(text, max_length=50, min_length=25), 'transformer_embeddings': doc._.trf_data.tensors[-1].tolist() } # Enhanced Streamlit UI Components st.set_page_config( page_title="Ultra AI Code Assistant Pro", page_icon="🚀", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for improved styling st.markdown(""" """, unsafe_allow_html=True) # Main UI Layout st.title("🚀 Ultra AI Code Assistant Pro") st.markdown("""

Next-Generation AI-Powered Development Environment

""", unsafe_allow_html=True) # Split layout into main content and sidebar main_col, sidebar_col = st.columns([3, 1]) with main_col: task_type = st.selectbox("Select Task Type", [ "Code Generation", "ML Pipeline Development", "Data Science Analysis", "NLP Processing", "Computer Vision", "Cloud Deployment", "Performance Optimization" ], key='task_type') prompt = st.text_area("Describe your task in detail:", height=150, placeholder="Enter your requirements here...") if st.button("Generate Solution", key="main_generate"): if not prompt.strip(): st.error("Please provide detailed requirements") else: with st.spinner("Analyzing requirements and generating solution..."): try: # Enhanced processing pipeline processed_input = process_user_input(prompt) response = generate_response(f""" Generate comprehensive solution for: {processed_input.text} Include: - Architecture design - Implementation code - Testing strategy - Deployment plan - Monitoring setup """) if "Error" in response: handle_error(response) else: optimized_code, lint_results = optimize_code(response) # Display results in tabs tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"]) with tab1: st.subheader("Optimized Solution") st.code(optimized_code, language='python') col1, col2 = st.columns(2) with col1: st.download_button( label="Download Code", data=optimized_code, file_name="solution.py", mime="text/python" ) with col2: if st.button("Generate Documentation"): docs = generate_documentation(optimized_code) st.markdown(docs) with tab2: st.subheader("Code Quality Report") for tool, result in lint_results.items(): with st.expander(f"{tool.upper()} Results"): st.code(result['output']) st.subheader("Performance Metrics") # Add performance benchmarking here with tab3: st.subheader("Cloud Deployment Options") # Add cloud deployment widgets here except Exception as e: handle_error(e) with sidebar_col: st.markdown("## Quick Tools") if st.button("Code Review"): # Implement real-time code review pass if st.button("Security Scan"): # Implement security scanning pass st.markdown("## Project Stats") # Add system monitoring st.write(f"CPU Usage: {psutil.cpu_percent()}%") st.write(f"Memory Usage: {psutil.virtual_memory().percent}%") st.markdown("## Recent Activity") # Add activity log display st.write("No recent activity") # Additional Features st.markdown("## Advanced Features") features = st.columns(3) with features[0]: with st.expander("Live Collaboration"): st.write("Real-time collaborative coding features") # Add collaborative editing components with features[1]: with st.expander("API Generator"): st.write("Generate REST API endpoints from code") # Add OpenAPI/Swagger generation with features[2]: with st.expander("ML Ops"): st.write("Machine Learning Operations Dashboard") # Add model monitoring components # System Monitoring Dashboard st.markdown("## System Health Monitor") sys_cols = st.columns(4) sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%") sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%") sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%") sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB") # Footer st.markdown("""

Ultra AI Code Assistant Pro v2.0

Powered by Gemini 1.5 Pro | Secure and Compliant
""", unsafe_allow_html=True) # Additional enhancements not shown here would include: # - Real-time collaboration features # - Jupyter notebook integration # - CI/CD pipeline generation # - Infrastructure-as-Code templates # - Advanced profiling and benchmarking # - Multi-language support # - Vulnerability scanning integration # - Automated documentation generation # - Cloud deployment wizards # - Team management features