Next-Generation AI-Powered Development Environment
import streamlit as st import google.generativeai as genai import requests import subprocess import os import pylint import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import (accuracy_score, precision_score, recall_score, f1_score, confusion_matrix) import git import spacy from spacy.lang.en import English import boto3 import unittest import docker import sympy as sp from scipy.optimize import minimize, differential_evolution import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display from tenacity import retry, stop_after_attempt, wait_fixed import torch import torch.nn as nn import torch.optim as optim from transformers import (AutoTokenizer, AutoModel, pipeline, set_seed) import networkx as nx from sklearn.cluster import KMeans from scipy.stats import ttest_ind from statsmodels.tsa.arima.model import ARIMA import nltk from nltk.sentiment import SentimentIntensityAnalyzer import cv2 from PIL import Image import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input import logging from logging.handlers import RotatingFileHandler import platform import psutil import yaml import json import black import flake8.main.application # Initialize NLTK resources nltk.download('punkt') nltk.download('vader_lexicon') # Configure logging log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5) logging.basicConfig( handlers=[log_handler], level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Configure the Gemini API genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) # Enhanced system instructions with security and best practices SYSTEM_INSTRUCTIONS = """ You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines: 1. Generate secure, efficient, and maintainable code 2. Implement industry best practices and design patterns 3. Include proper error handling and logging 4. Optimize for performance and scalability 5. Add detailed documentation and type hints 6. Suggest relevant libraries and frameworks 7. Consider security implications and vulnerabilities 8. Provide test cases and benchmarking 9. Support multiple programming languages when applicable 10. Follow PEP8 and other relevant style guides """ # Create the model with enhanced configuration generation_config = { "temperature": 0.35, "top_p": 0.85, "top_k": 40, "max_output_tokens": 8192, } model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, system_instruction=SYSTEM_INSTRUCTIONS ) chat_session = model.start_chat(history=[]) @retry(stop=stop_after_attempt(5), wait=wait_fixed(2)) def generate_response(user_input): try: response = chat_session.send_message(user_input) return response.text except Exception as e: logging.error(f"Generation error: {str(e)}") return f"Error: {e}" def optimize_code(code): """Perform comprehensive code optimization and linting""" with open("temp_code.py", "w") as file: file.write(code) # Run multiple code quality tools tools = { 'pylint': ["pylint", "temp_code.py"], 'flake8': ["flake8", "temp_code.py"], 'black': ["black", "--check", "temp_code.py"] } results = {} for tool, cmd in tools.items(): result = subprocess.run(cmd, capture_output=True, text=True) results[tool] = { 'output': result.stdout + result.stderr, 'status': result.returncode } # Format code with black try: formatted_code = black.format_file_contents( code, mode=black.FileMode() ) code = formatted_code except Exception as e: logging.warning(f"Black formatting failed: {str(e)}") os.remove("temp_code.py") return code, results def train_advanced_ml_model(X, y): """Enhanced ML training with hyperparameter tuning""" X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y ) param_grid = { 'RandomForest': { 'n_estimators': [100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5] }, 'GradientBoosting': { 'n_estimators': [100, 200], 'learning_rate': [0.1, 0.05], 'max_depth': [3, 5] } } models = { 'RandomForest': RandomForestClassifier(random_state=42), 'GradientBoosting': GradientBoostingClassifier(random_state=42) } results = {} for name, model in models.items(): grid_search = GridSearchCV( model, param_grid[name], cv=5, n_jobs=-1, scoring='f1_weighted' ) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ y_pred = best_model.predict(X_test) results[name] = { 'best_params': grid_search.best_params_, 'accuracy': accuracy_score(y_test, y_pred), 'precision': precision_score(y_test, y_pred, average='weighted'), 'recall': recall_score(y_test, y_pred, average='weighted'), 'f1': f1_score(y_test, y_pred, average='weighted'), 'confusion_matrix': confusion_matrix(y_test, y_pred).tolist() } return results def handle_error(error): """Enhanced error handling with logging and notifications""" st.error(f"An error occurred: {error}") logging.error(f"User-facing error: {str(error)}") # Send notification to admin (example with AWS SNS) try: if st.secrets.get("AWS_CREDENTIALS"): client = boto3.client( 'sns', aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"], aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"], region_name='us-east-1' ) client.publish( TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"], Message=f"Code Assistant Error: {str(error)}" ) except Exception as e: logging.error(f"Error notification failed: {str(e)}") def visualize_complex_data(data): """Enhanced visualization with interactive elements""" df = pd.DataFrame(data) # Create interactive Plotly figures fig = px.scatter_matrix(df) fig.update_layout( title='Interactive Scatter Matrix', width=1200, height=800 ) # Add 3D visualization if df.shape[1] >= 3: fig_3d = px.scatter_3d( df, x=df.columns[0], y=df.columns[1], z=df.columns[2], title='3D Data Visualization' ) return [fig, fig_3d] return [fig] def perform_nlp_analysis(text): """Enhanced NLP analysis with transformer models""" # Basic spaCy analysis nlp = spacy.load("en_core_web_trf") doc = nlp(text) # Transformer-based sentiment analysis sentiment_analyzer = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english" ) # Text summarization summarizer = pipeline("summarization", model="t5-small") return { 'entities': [(ent.text, ent.label_) for ent in doc.ents], 'syntax': [(token.text, token.dep_) for token in doc], 'sentiment': sentiment_analyzer(text), 'summary': summarizer(text, max_length=50, min_length=25), 'transformer_embeddings': doc._.trf_data.tensors[-1].tolist() } # Enhanced Streamlit UI Components st.set_page_config( page_title="Ultra AI Code Assistant Pro", page_icon="🚀", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for improved styling st.markdown(""" """, unsafe_allow_html=True) # Main UI Layout st.title("🚀 Ultra AI Code Assistant Pro") st.markdown("""
Next-Generation AI-Powered Development Environment
Ultra AI Code Assistant Pro v2.0
Powered by Gemini 1.5 Pro | Secure and Compliant