Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,64 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import AutoTokenizer
|
3 |
import onnxruntime
|
4 |
import scipy.io.wavfile
|
5 |
-
import numpy as np
|
6 |
-
import torch # Import torch - might be needed for tokenizer output
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
input_ids = inputs.input_ids.cpu().to(torch.long) # Ensure LongTensor for ONNX
|
21 |
-
|
22 |
-
# Run inference with ONNX Runtime
|
23 |
-
onnx_outputs = ort_session.run(None, {"input_ids": input_ids.numpy()})
|
24 |
-
waveform = onnx_outputs[0] # Output waveform
|
25 |
-
|
26 |
-
sampling_rate = 16000 # Assuming 16kHz, adjust if your model uses different rate
|
27 |
|
28 |
-
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
iface = gr.Interface(
|
33 |
-
fn=
|
34 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter text
|
35 |
-
outputs=gr.Audio(
|
36 |
-
title="
|
37 |
-
description="
|
38 |
-
examples=[
|
39 |
-
["Hello, this is a demonstration of fast text-to-speech on CPU."],
|
40 |
-
["This is another example sentence."],
|
41 |
-
["How does this sound to you?"]
|
42 |
-
]
|
43 |
)
|
44 |
|
45 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
from transformers import AutoTokenizer
|
6 |
import onnxruntime
|
7 |
import scipy.io.wavfile
|
|
|
|
|
8 |
|
9 |
+
# Specify the Hugging Face repository/model directory.
|
10 |
+
# This repository (Athspi/Gg) should contain the tokenizer files and the ONNX model file.
|
11 |
+
model_dir = "Athspi/Gg"
|
12 |
|
13 |
+
# Define the ONNX model filename. Adjust the filename if needed.
|
14 |
+
onnx_model_filename = "model_quantized.onnx"
|
15 |
+
onnx_model_path = os.path.join(model_dir, onnx_model_filename)
|
16 |
|
17 |
+
# Load the tokenizer from the Hugging Face model repository
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
19 |
|
20 |
+
# Initialize the ONNX runtime session for inference.
|
21 |
+
ort_session = onnxruntime.InferenceSession(
|
22 |
+
onnx_model_path, providers=['CPUExecutionProvider']
|
23 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Define the fixed sampling rate (adjust if your model uses a different rate)
|
26 |
+
sampling_rate = 16000
|
27 |
|
28 |
+
def tts_inference(text: str):
|
29 |
+
"""
|
30 |
+
Convert input text to speech waveform using the ONNX model.
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
text (str): Input text to synthesize.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
waveform (np.ndarray): Synthesized audio waveform.
|
37 |
+
sampling_rate (int): The sampling rate of the waveform.
|
38 |
+
"""
|
39 |
+
# Tokenize the input text.
|
40 |
+
inputs = tokenizer(text, return_tensors="pt")
|
41 |
+
|
42 |
+
# Prepare inputs for the ONNX model.
|
43 |
+
input_ids = inputs.input_ids.cpu().to(torch.long).numpy()
|
44 |
+
|
45 |
+
# Run inference on the ONNX model.
|
46 |
+
onnx_outputs = ort_session.run(None, {"input_ids": input_ids})
|
47 |
+
waveform = onnx_outputs[0]
|
48 |
+
|
49 |
+
# Remove unnecessary dimensions.
|
50 |
+
waveform = np.squeeze(waveform)
|
51 |
+
|
52 |
+
# Return the waveform and its sampling rate.
|
53 |
+
return waveform, sampling_rate
|
54 |
|
55 |
+
# Build a Gradio interface.
|
56 |
iface = gr.Interface(
|
57 |
+
fn=tts_inference,
|
58 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
59 |
+
outputs=gr.Audio(type="numpy"),
|
60 |
+
title="ONNX TTS Demo",
|
61 |
+
description="Text-to-Speech synthesis using an ONNX model from the Athspi/Gg repository on Hugging Face."
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|