File size: 29,001 Bytes
5fced44
3fd0067
740846d
b8a34b4
5fced44
 
 
e106c9a
 
3fd0067
 
5fced44
 
bdfd7a5
5fced44
9b324d1
5fced44
3fd0067
5fced44
 
 
 
3fd0067
 
5fced44
 
 
 
3fd0067
5fced44
 
 
 
 
3fd0067
5fced44
 
 
3fd0067
5fced44
 
3fd0067
bdfd7a5
3fd0067
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0067
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0067
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0067
9b324d1
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b324d1
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e106c9a
a517846
5fced44
 
 
 
 
 
 
 
 
 
 
 
9b324d1
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a517846
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b324d1
5fced44
 
 
 
 
 
 
3fd0067
5fced44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0067
bdfd7a5
5fced44
 
 
 
 
 
5f3d5cb
5fced44
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# -*- coding: utf-8 -*-
import os
import gradio as gr
from google import genai
# Make sure to import necessary types from the SDK
from google.generative_ai import types
from google.generative_ai.types import HarmCategory, HarmBlockThreshold # For safety settings
import requests
import markdownify
from urllib.robotparser import RobotFileParser
from urllib.parse import urlparse
import traceback
import json # Although not directly used in the final code, useful for debugging args

# --- Browser/Web Tool Functions ---

def can_crawl_url(url: str, user_agent: str = "PythonGoogleGenAIAgent/1.0") -> bool:
    """Check robots.txt permissions for a URL"""
    # Use a more specific user agent, but '*' is a fallback
    if not url:
        print("No URL provided to can_crawl_url")
        return False
    try:
        parsed_url = urlparse(url)
        if not parsed_url.scheme or not parsed_url.netloc:
            print(f"Invalid URL format for robots.txt check: {url}")
            return False # Cannot determine robots.txt location

        robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
        print(f"Checking robots.txt at: {robots_url} for URL: {url}")

        # Using RobotFileParser's default opener which handles redirects
        rp = RobotFileParser()
        rp.set_url(robots_url)
        rp.read()
        can_fetch = rp.can_fetch(user_agent, url)
        print(f"Can fetch {url} with agent '{user_agent}': {can_fetch}")
        return can_fetch
    except Exception as e:
        print(f"Error checking robots.txt for {url}: {e}")
        # Default to false if unsure, to be polite to servers
        return False

def load_page(url: str) -> str:
    """
    Load webpage content as markdown. Designed to be used as a Gemini Function.
    Args:
        url: The URL of the webpage to load.
    Returns:
        Markdown content of the page or an error message.
    """
    print(f"Attempting to load page: {url}")
    if not url:
        return "Error: No URL provided."
    if not url.startswith(('http://', 'https://')):
         return f"Error: Invalid URL scheme. Please provide http or https URL. Got: {url}"

    USER_AGENT = "PythonGoogleGenAIAgent/1.0 (Function Calling)" # Be identifiable
    if not can_crawl_url(url, user_agent=USER_AGENT):
        print(f"URL {url} failed robots.txt check for agent {USER_AGENT}")
        return f"Error: Access denied by robots.txt for URL {url}"
    try:
        headers = {'User-Agent': USER_AGENT}
        response = requests.get(url, timeout=15, headers=headers, allow_redirects=True)
        response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)

        # Check content type - try to only process HTML
        content_type = response.headers.get('content-type', '').lower()
        if 'html' not in content_type:
            print(f"Non-HTML content type '{content_type}' at {url}. Returning summary.")
            # Return limited info for non-html types
            return f"Content at {url} is of type '{content_type}'. Size: {len(response.content)} bytes. Cannot convert to Markdown."

        # Limit content size before markdown conversion to avoid excessive memory/CPU
        MAX_CONTENT_SIZE = 1_000_000 # 1MB limit
        if len(response.content) > MAX_CONTENT_SIZE:
             print(f"Content size {len(response.content)} exceeds limit {MAX_CONTENT_SIZE}. Truncating.")
             # Decode potentially large content carefully
             try:
                 html_content = response.content[:MAX_CONTENT_SIZE].decode(response.apparent_encoding or 'utf-8', errors='ignore')
             except Exception as decode_err:
                 print(f"Decoding error after truncation: {decode_err}. Falling back to utf-8 ignore.")
                 html_content = response.content[:MAX_CONTENT_SIZE].decode('utf-8', errors='ignore')
             truncated_msg = "\n\n[Content truncated due to size limit]"
        else:
            html_content = response.text # Use response.text which handles encoding better for smaller content
            truncated_msg = ""

        # Convert to Markdown
        # Added heading_style for potentially better formatting
        markdown_content = markdownify.markdownify(html_content, heading_style="ATX", strip=['script', 'style'], escape_underscores=False)

        # Simple cleaning (optional, can be expanded)
        markdown_content = '\n'.join([line.strip() for line in markdown_content.splitlines() if line.strip()])

        print(f"Successfully loaded and converted {url} to markdown.")
        # Add URL source attribution
        return f"Content from {url}:\n\n" + markdown_content + truncated_msg

    except requests.exceptions.Timeout:
        print(f"Timeout error loading page: {url}")
        return f"Error: Timeout while trying to load {url}"
    except requests.exceptions.RequestException as e:
        print(f"Request error loading page {url}: {str(e)}")
        return f"Error loading page {url}: {str(e)}"
    except Exception as e:
        print(f"General error loading page {url}: {str(e)}")
        traceback.print_exc() # Print full traceback for debugging
        return f"Error loading page {url}: An unexpected error occurred ({type(e).__name__})."


# --- Gemini Client Initialization and Configuration ---
try:
    api_key = os.environ.get("GEMINI_API_KEY")
    if not api_key:
        raise ValueError("GEMINI_API_KEY environment variable not set.")
    genai.configure(api_key=api_key)

    # *** Use the requested experimental model ***
    MODEL_NAME = "gemini-2.5-pro-exp-03-25"
    print(f"Attempting to use EXPERIMENTAL model: {MODEL_NAME}")

    # Define the browse tool using FunctionDeclaration
    browse_tool = types.Tool(
        function_declarations=[
            types.FunctionDeclaration(
                name='load_page',
                description='Fetches the content of a specific web page URL as Markdown text. Use this when the user asks for information from a specific URL they provide, or when you need to look up live information mentioned alongside a specific source URL.',
                parameters=types.Schema(
                    type=types.Type.OBJECT,
                    properties={
                        'url': types.Schema(type=types.Type.STRING, description="The *full* URL of the webpage to load (must start with http:// or https://).")
                    },
                    required=['url']
                )
            )
        ]
    )
    # Define the code execution tool
    # Enables the model to suggest and potentially execute Python code.
    code_execution_tool = types.Tool(code_execution=types.ToolCodeExecution())

    # Combine tools that the model can use
    tools = [browse_tool, code_execution_tool]

    # Create the model instance
    model = genai.GenerativeModel(
        model_name=MODEL_NAME,
        tools=tools,
        # Relax safety settings slightly *if needed* for code/complex generation,
        # but be aware of the implications. BLOCK_NONE is risky. Use with caution.
        # Consider BLOCK_LOW_AND_ABOVE or MEDIUM as safer alternatives.
        safety_settings={
             HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
             HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
             HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
             HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
             # Adjust specific categories if you face frequent blocking for safe content.
        },
        # System instruction (optional but recommended for setting context)
        system_instruction="You are a helpful AI assistant called Gemini-Toolkit. You can browse specific web pages provided by the user via the 'load_page' tool. You can also execute Python code using the 'code_execution' tool to perform calculations, analyze data, or demonstrate programming concepts. Explain your reasoning and the steps you take. If asked to browse, confirm the URL you are accessing. If providing code, explain what it does.",
    )
    print(f"Gemini client initialized with model: {MODEL_NAME} and tools.")

except Exception as e:
    print(f"CRITICAL ERROR: Error initializing Gemini client: {e}")
    traceback.print_exc()
    # Provide a fallback model or handle the error gracefully in the UI
    model = None
    tools = []
    # Consider exiting if the core functionality is unavailable
    # raise SystemExit("Failed to initialize core Gemini model.") from e

# --- Gradio App Logic ---

def handle_function_call(function_call):
    """Executes the function call requested by the model."""
    function_name = function_call.name
    args = function_call.args # This is now a dict-like object

    print(f"Executing Function Call: {function_name} with args: {dict(args)}") # Log args

    try:
        if function_name == 'load_page':
            url = args.get('url')
            if url:
                # Execute the actual function
                function_response_content = load_page(url=url)
                # Limit response size to send back to Gemini
                MAX_RESPONSE_LEN = 50000 # Limit characters sent back
                if len(function_response_content) > MAX_RESPONSE_LEN:
                    print(f"Tool Response truncated from {len(function_response_content)} to {MAX_RESPONSE_LEN} chars.")
                    function_response_content = function_response_content[:MAX_RESPONSE_LEN] + "\n\n[... Tool Response Truncated Due to Size Limit ...]"
            else:
                function_response_content = "Error: URL parameter was missing in the function call. Please ensure the 'url' argument is provided."
        else:
            # Should not happen if tools are defined correctly and model uses them
            print(f"Error: Received call for unknown function '{function_name}'")
            function_response_content = f"Error: Unknown function '{function_name}' called by the model."

        # Create the FunctionResponse part to send back to the model
        # API expects the response arg to be a dict, typically {'content': <result>}
        function_response_part = types.Part(
            function_response=types.FunctionResponse(
                name=function_name,
                response={'content': function_response_content}
            )
        )
        print(f"Function Response generated for {function_name}")
        return function_response_part

    except Exception as e:
         print(f"Error during execution of function '{function_name}': {e}")
         traceback.print_exc()
         # Return an error message back to the model
         return types.Part(
             function_response=types.FunctionResponse(
                 name=function_name,
                 response={'error': f"Failed to execute function {function_name}: {str(e)}"}
             )
         )

def generate_response_with_tools(user_input, history_state):
    """Handles user input, interacts with Gemini (incl. tools), and manages history."""
    if not model:
         # Handle case where model initialization failed
         return "Error: The AI model (Gemini) could not be initialized. Please check the logs or API key configuration.", history_state or []

    if not user_input.strip():
        # Return immediately if input is empty, don't update history
        # Let the UI handle showing this message without clearing history state
        # For chatbot, we might just not send anything or return a specific tuple
        # Returning just a message for the chatbot display:
        return [[None, "Please enter a valid query."]], history_state or []


    # --- History Management ---
    # Load history from state (should be list of Content objects)
    # Initialize if state is None or empty
    conversation_history = history_state if isinstance(history_state, list) else []

    # Append the user's new message to the history
    conversation_history.append(types.Content(role="user", parts=[types.Part.from_text(user_input)]))
    print(f"\n--- Sending to Gemini (History length: {len(conversation_history)}) ---")

    # Limit history length *before* sending to API to avoid excessive token usage/cost
    # Keep the system instruction + last N turns. A turn = user msg + model response (potentially with tool calls/responses)
    MAX_HISTORY_TURNS = 10
    max_history_items = MAX_HISTORY_TURNS * 2 + (1 if conversation_history and conversation_history[0].role == "system" else 0) # Approx items to keep

    if len(conversation_history) > max_history_items:
        print(f"Trimming conversation history from {len(conversation_history)} items to ~{max_history_items}")
        if conversation_history[0].role == "system":
             # Keep system instruction and the latest items
             conversation_history = [conversation_history[0]] + conversation_history[-(max_history_items-1):]
        else:
             # Just keep the latest items
             conversation_history = conversation_history[-max_history_items:]


    # --- Interaction Loop (for potential tool calls) ---
    MAX_TOOL_LOOPS = 5 # Prevent infinite loops if the model keeps calling tools without finishing
    loop_count = 0
    current_history_for_api = list(conversation_history) # Work with a copy in the loop

    try:
        while loop_count < MAX_TOOL_LOOPS:
            loop_count += 1
            print(f"Generation loop {loop_count}/{MAX_TOOL_LOOPS}...")

            # Send context and query to Gemini
            # Use the potentially trimmed history for this API call
            response = model.generate_content(
                current_history_for_api,
                request_options={"timeout": 120}, # Increase timeout for complex/tool calls
                # generation_config=genai.types.GenerationConfig( # If you need temperature etc.
                #     temperature=0.7
                # )
            )

            # --- Process Response Candidate ---
            if not response.candidates:
                 print("Warning: No candidates received from Gemini.")
                 # Append a message indicating no response
                 final_bot_message = "[No response generated by the model.]"
                 current_history_for_api.append(types.Content(role="model", parts=[types.Part.from_text(final_bot_message)]))
                 break # Exit loop

            candidate = response.candidates[0]

            # Check for safety blocks or finish reasons other than STOP or TOOL use
            if candidate.finish_reason not in (types.Candidate.FinishReason.STOP, types.Candidate.FinishReason.TOOL_CALL):
                 print(f"Warning: Generation stopped unexpectedly. Reason: {candidate.finish_reason.name}")
                 # Append the reason to the conversation for context, if desired
                 stop_reason_msg = f"[Model stopped generating. Reason: {candidate.finish_reason.name}]"
                 # Check if there's any text content before adding the stop reason
                 if candidate.content and candidate.content.parts and any(p.text for p in candidate.content.parts):
                     current_history_for_api.append(candidate.content) # Add what content there was
                     # Extract text to display if needed, before adding stop reason
                     final_bot_message = "".join([p.text for p in candidate.content.parts if p.text]) + f"\n{stop_reason_msg}"
                 else:
                      # No text, just add the stop reason message as the model turn
                      final_bot_message = stop_reason_msg
                      current_history_for_api.append(types.Content(role="model", parts=[types.Part.from_text(final_bot_message)]))
                 break # Exit loop

            # --- Handle Potential Tool Call ---
            has_tool_call = candidate.finish_reason == types.Candidate.FinishReason.TOOL_CALL

            # Append the model's response (which might contain text and/or tool calls) to history *before* execution
            # The API expects the model's turn asking for the tool first.
            current_history_for_api.append(candidate.content)

            if has_tool_call:
                print("Tool call requested by model.")
                tool_calls_to_process = [part.function_call for part in candidate.content.parts if part.function_call]

                if not tool_calls_to_process:
                     print("Warning: Model indicated TOOL_CALL finish reason but no function_call part found.")
                     # Maybe append an error message? Or just break?
                     # Let's try to continue, maybe there's text output.
                     final_bot_message = "".join([p.text for p in candidate.content.parts if p.text])
                     if not final_bot_message:
                          final_bot_message = "[Model indicated tool use but provided no details or text.]"
                     break # Exit loop as we can't proceed with tool call

                # Execute the function(s) and get responses
                tool_responses = []
                for function_call in tool_calls_to_process:
                     function_response_part = handle_function_call(function_call)
                     tool_responses.append(function_response_part)

                # Add the tool execution results to history for the *next* API call
                current_history_for_api.append(types.Content(role="tool", parts=tool_responses)) # Use role="tool"
                print("Added tool response(s) to history. Continuing loop...")
                continue # Go back to the start of the while loop to call the API again

            else:
                # No tool call, this is the final response from the model
                print("No tool call requested. Final response received.")
                final_bot_message = "".join([part.text for part in candidate.content.parts if part.text])

                # Also check for code execution *suggestions* or *results* in the final turn
                code_parts_display = []
                for part in candidate.content.parts:
                     if part.executable_code:
                         lang = part.executable_code.language.name.lower() if part.executable_code.language else "python"
                         code = part.executable_code.code
                         code_parts_display.append(f"Suggested Code ({lang}):\n```{'python' if lang == 'unknown_language' else lang}\n{code}\n```")
                     elif part.code_execution_result:
                         outcome_str = "Success" if part.code_execution_result.outcome == part.code_execution_result.Outcome.OK else "Failure"
                         code_parts_display.append(f"Code Execution Result ({outcome_str}):\n```\n{part.code_execution_result.output}\n```")

                if code_parts_display:
                    final_bot_message += "\n\n" + "\n\n".join(code_parts_display)

                # Handle empty final message case
                if not final_bot_message.strip():
                     final_bot_message = "[Assistant completed its turn without generating text output.]"

                break # Exit the while loop

        # End of while loop
        if loop_count >= MAX_TOOL_LOOPS:
             print(f"Warning: Reached maximum tool execution loops ({MAX_TOOL_LOOPS}).")
             final_bot_message = (final_bot_message + "\n\n" if final_bot_message else "") + f"[Warning: Reached maximum tool execution loops ({MAX_TOOL_LOOPS}). The final response might be incomplete.]"
             # Ensure the last model message is added even if loop limit reached
             if current_history_for_api[-1].role != "model":
                  current_history_for_api.append(types.Content(role="model", parts=[types.Part.from_text(final_bot_message)]))


        print("--- Response Generation Complete ---")
        # Update the main history state with the final state of the conversation
        # We return the *final* bot message text for display, and the *full* history state
        # The chatbot UI needs [[user, bot], [user, bot], ...] format
        # Create the Gradio chatbot display format from our history
        chatbot_display_list = []
        user_msg = None
        for i, content in enumerate(current_history_for_api):
             # Skip system instruction for display
             if content.role == "system": continue
             # Combine multi-part messages for display
             msg_text = ""
             for part in content.parts:
                 if part.text:
                      msg_text += part.text + "\n"
                 # Display code suggestions nicely
                 elif part.executable_code:
                      lang = part.executable_code.language.name.lower() if part.executable_code.language else "python"
                      code = part.executable_code.code
                      msg_text += f"\nSuggested Code ({lang}):\n```{'python' if lang == 'unknown_language' else lang}\n{code}\n```\n"
                 # We don't display tool calls/responses directly in chat bubbles usually
                 # elif part.function_call: msg_text += f"[Requesting tool: {part.function_call.name}]\n"
                 # elif part.function_response: msg_text += f"[Tool response received for {part.function_response.name}]\n"
                 elif part.code_execution_result:
                      outcome_str = "Success" if part.code_execution_result.outcome == part.code_execution_result.Outcome.OK else "Failure"
                      msg_text += f"\nCode Execution Result ({outcome_str}):\n```\n{part.code_execution_result.output}\n```\n"

             msg_text = msg_text.strip()
             if not msg_text: continue # Skip empty parts/turns

             if content.role == "user":
                  # If there was a pending user message, start a new pair
                  user_msg = msg_text
                  # Append None temporarily for the bot response, it will be filled if available
                  chatbot_display_list.append([user_msg, None])
             elif content.role == "model":
                  if chatbot_display_list and chatbot_display_list[-1][1] is None:
                      # Fill in the bot response for the last user message
                      chatbot_display_list[-1][1] = msg_text
                  else:
                      # Model message without a preceding user message (unlikely here, but handle)
                      # Or potentially consecutive model messages after tool use. Append as separate bot message.
                      chatbot_display_list.append([None, msg_text])
                  user_msg = None # Reset pending user message

        # Ensure the very last bot message is captured if the loop ended correctly
        # This logic might be redundant if the history appending handles it correctly
        # Let's rely on history build up and the formatting loop above.

        return chatbot_display_list, current_history_for_api # Return display list and history state

    except Exception as e:
        print(f"ERROR during Gemini generation or tool processing: {str(e)}")
        traceback.print_exc()
        error_message = f"An error occurred while processing your request: {str(e)}"
        # Return error in chatbot format and the history state *before* the error
        chatbot_error_display = [[None, error_message]]
        # Try to get the display history before error if possible
        if 'current_history_for_api' in locals():
             # Rebuild display list up to the point before error for continuity
             # (This is simplified, full rebuild might be complex)
             existing_display = []
             for c in current_history_for_api[:-1]: # Exclude potentially problematic last addition
                  if c.role == "user": existing_display.append([c.parts[0].text, None])
                  elif c.role == "model" and existing_display and existing_display[-1][1] is None:
                      existing_display[-1][1] = "".join([p.text for p in c.parts if p.text])
             existing_display.append([None, error_message]) # Add error message at end
             chatbot_error_display = existing_display


        # Return the history *before* this failed turn started
        return chatbot_error_display, conversation_history # Revert state to before this turn


# --- Gradio Interface ---

with gr.Blocks(title="Gemini AI Assistant w/ Tools", theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"# πŸš€ Gemini AI Assistant ({MODEL_NAME})")
    gr.Markdown("Ask questions, request info from specific URLs, or ask for code/calculations. Uses function calling and code execution.")

    # Chatbot component to display conversation
    chatbot_display = gr.Chatbot(
        label="Conversation",
        bubble_full_width=False,
        height=600, # Increased height
        show_copy_button=True,
        render_markdown=True # Ensure markdown inc code blocks is rendered
    )

    # Textbox for user input
    msg_input = gr.Textbox(
        label="Your Query",
        placeholder="Ask anything... (e.g., 'Summarize example.com', 'Calculate 2^64', 'Write python code to list files')",
        lines=3, # Start with more lines
        scale=4 # Take more horizontal space
    )

    # Use ClearButton which handles multiple components
    clear_btn = gr.ClearButton(value="πŸ—‘οΈ Clear Chat")

    # Submit button (using default value seems fine)
    send_btn = gr.Button("➑️ Send", variant="primary", scale=1)


    # Hidden state to store the raw conversation history (list of genai.types.Content)
    chat_history_state = gr.State([])

    def user_message_update(user_message, history_display_list):
        """Appends the user's message to the display list and clears the input."""
        if not user_message.strip(): # Avoid adding empty messages
             return gr.update(value=""), history_display_list # Clear input, return unchanged history display
        # Append user message with None placeholder for bot response
        return gr.update(value=""), history_display_list + [[user_message, None]]

    def bot_response_update(history_display_list, history_state):
        """Calls the backend Gemini function and updates display/state."""
        if not history_display_list or history_display_list[-1][0] is None:
             # Should not happen if user_message_update ran first, but safeguard
             print("Warning: bot_response_update called without preceding user message in display.")
             # Return unchanged display, maybe signal error? For now, just return current state.
             return history_display_list, history_state

        user_message = history_display_list[-1][0] # Get the last user message from display list
        print(f"User message being sent to backend: {user_message}")

        # Call the main Gemini interaction function
        # It now returns the *entire* chat history for display, and the updated state
        updated_display_list, updated_history_state = generate_response_with_tools(user_message, history_state)

        # The backend function now returns the full display list
        # Update the state variable directly
        return updated_display_list, updated_history_state

    # Define the action for sending a message (Enter key in Textbox)
    msg_input.submit(
        user_message_update,    # 1. Update display with user msg, clear input
        [msg_input, chatbot_display],
        [msg_input, chatbot_display],
        queue=False,            # Run immediately UI update
    ).then(
        bot_response_update,    # 2. Call backend, get full display list & new state
        [chatbot_display, chat_history_state], # Pass current display (for last msg) & state
        [chatbot_display, chat_history_state]  # Update display & state from backend return
    )

    # Define the action for clicking the Send button
    send_btn.click(
        user_message_update,
        [msg_input, chatbot_display],
        [msg_input, chatbot_display],
        queue=False,
    ).then(
        bot_response_update,
        [chatbot_display, chat_history_state],
        [chatbot_display, chat_history_state]
    )

    # Setup the ClearButton to target the necessary components, including the state
    clear_btn.add(components=[msg_input, chatbot_display, chat_history_state])
    # The ClearButton itself doesn't need a custom function when using .add()
    # It will set components to their default/initial values (Textbox="", Chatbot=None, State=[])


if __name__ == "__main__":
    print("Starting Gradio App...")
    # Enable queue for handling potentially long API calls/tool executions
    # Set share=True to get a public link (remove if only running locally)
    demo.queue().launch(server_name="0.0.0.0", server_port=7860)
    print("Gradio App Stopped.")