File size: 26,953 Bytes
5fced44 3fd0067 740846d baface3 07a6e29 baface3 e106c9a 3fd0067 5fced44 bdfd7a5 5fced44 9b324d1 5fced44 3fd0067 5fced44 3fd0067 5fced44 baface3 3fd0067 5fced44 3fd0067 5fced44 3fd0067 5fced44 3fd0067 bdfd7a5 3fd0067 5fced44 baface3 5fced44 3fd0067 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 3fd0067 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 3fd0067 9b324d1 5fced44 baface3 5fced44 baface3 5fced44 9b324d1 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 e106c9a a517846 5fced44 baface3 9b324d1 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 a517846 5fced44 baface3 5fced44 baface3 5fced44 baface3 9b324d1 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 baface3 5fced44 3fd0067 bdfd7a5 5fced44 baface3 5fced44 5f3d5cb 5fced44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# -*- coding: utf-8 -*-
import os
import gradio as gr
# Corrected import: Import the main module and use an alias
import google.generativeai as genai
# Types will be accessed via genai.types
# Removed direct type imports, will use genai.types instead
# from google.generativeai import types # No longer needed
# from google.generativeai.types import HarmCategory, HarmBlockThreshold # No longer needed
import requests
import markdownify
from urllib.robotparser import RobotFileParser
from urllib.parse import urlparse
import traceback
import json # Although not directly used in the final code, useful for debugging args
# --- Browser/Web Tool Functions ---
def can_crawl_url(url: str, user_agent: str = "PythonGoogleGenAIAgent/1.0") -> bool:
"""Check robots.txt permissions for a URL"""
if not url:
print("No URL provided to can_crawl_url")
return False
try:
parsed_url = urlparse(url)
if not parsed_url.scheme or not parsed_url.netloc:
print(f"Invalid URL format for robots.txt check: {url}")
return False
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
print(f"Checking robots.txt at: {robots_url} for URL: {url}")
rp = RobotFileParser()
rp.set_url(robots_url)
rp.read()
can_fetch = rp.can_fetch(user_agent, url)
print(f"Can fetch {url} with agent '{user_agent}': {can_fetch}")
return can_fetch
except Exception as e:
print(f"Error checking robots.txt for {url}: {e}")
return False
def load_page(url: str) -> str:
"""
Load webpage content as markdown. Designed to be used as a Gemini Function.
Args:
url: The URL of the webpage to load.
Returns:
Markdown content of the page or an error message.
"""
print(f"Attempting to load page: {url}")
if not url:
return "Error: No URL provided."
if not url.startswith(('http://', 'https://')):
return f"Error: Invalid URL scheme. Please provide http or https URL. Got: {url}"
USER_AGENT = "PythonGoogleGenAIAgent/1.0 (Function Calling)"
if not can_crawl_url(url, user_agent=USER_AGENT):
print(f"URL {url} failed robots.txt check for agent {USER_AGENT}")
return f"Error: Access denied by robots.txt for URL {url}"
try:
headers = {'User-Agent': USER_AGENT}
response = requests.get(url, timeout=15, headers=headers, allow_redirects=True)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
if 'html' not in content_type:
print(f"Non-HTML content type '{content_type}' at {url}. Returning summary.")
return f"Content at {url} is of type '{content_type}'. Size: {len(response.content)} bytes. Cannot convert to Markdown."
MAX_CONTENT_SIZE = 1_000_000
if len(response.content) > MAX_CONTENT_SIZE:
print(f"Content size {len(response.content)} exceeds limit {MAX_CONTENT_SIZE}. Truncating.")
try:
html_content = response.content[:MAX_CONTENT_SIZE].decode(response.apparent_encoding or 'utf-8', errors='ignore')
except Exception as decode_err:
print(f"Decoding error after truncation: {decode_err}. Falling back to utf-8 ignore.")
html_content = response.content[:MAX_CONTENT_SIZE].decode('utf-8', errors='ignore')
truncated_msg = "\n\n[Content truncated due to size limit]"
else:
html_content = response.text
truncated_msg = ""
markdown_content = markdownify.markdownify(html_content, heading_style="ATX", strip=['script', 'style'], escape_underscores=False)
markdown_content = '\n'.join([line.strip() for line in markdown_content.splitlines() if line.strip()])
print(f"Successfully loaded and converted {url} to markdown.")
return f"Content from {url}:\n\n" + markdown_content + truncated_msg
except requests.exceptions.Timeout:
print(f"Timeout error loading page: {url}")
return f"Error: Timeout while trying to load {url}"
except requests.exceptions.RequestException as e:
print(f"Request error loading page {url}: {str(e)}")
return f"Error loading page {url}: {str(e)}"
except Exception as e:
print(f"General error loading page {url}: {str(e)}")
traceback.print_exc()
return f"Error loading page {url}: An unexpected error occurred ({type(e).__name__})."
# --- Gemini Client Initialization and Configuration ---
try:
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError("GEMINI_API_KEY environment variable not set.")
# Use genai (the alias) to configure
genai.configure(api_key=api_key)
MODEL_NAME = "gemini-2.5-pro-exp-03-25"
print(f"Attempting to use EXPERIMENTAL model: {MODEL_NAME}")
# Define tools using genai.types
browse_tool = genai.types.Tool(
function_declarations=[
genai.types.FunctionDeclaration(
name='load_page',
description='Fetches the content of a specific web page URL as Markdown text. Use this when the user asks for information from a specific URL they provide, or when you need to look up live information mentioned alongside a specific source URL.',
parameters=genai.types.Schema(
type=genai.types.Type.OBJECT,
properties={
'url': genai.types.Schema(type=genai.types.Type.STRING, description="The *full* URL of the webpage to load (must start with http:// or https://).")
},
required=['url']
)
)
]
)
code_execution_tool = genai.types.Tool(code_execution=genai.types.ToolCodeExecution()) # Note: Simplified access
tools = [browse_tool, code_execution_tool]
# Create the model instance using genai alias
model = genai.GenerativeModel(
model_name=MODEL_NAME,
tools=tools,
safety_settings={
# Access HarmCategory and HarmBlockThreshold via genai.types
genai.types.HarmCategory.HARM_CATEGORY_HARASSMENT: genai.types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
genai.types.HarmCategory.HARM_CATEGORY_HATE_SPEECH: genai.types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
genai.types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: genai.types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
genai.types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: genai.types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
},
system_instruction="You are a helpful AI assistant called Gemini-Toolkit. You can browse specific web pages provided by the user via the 'load_page' tool. You can also execute Python code using the 'code_execution' tool to perform calculations, analyze data, or demonstrate programming concepts. Explain your reasoning and the steps you take. If asked to browse, confirm the URL you are accessing. If providing code, explain what it does.",
)
print(f"Gemini client initialized with model: {MODEL_NAME} and tools.")
except Exception as e:
print(f"CRITICAL ERROR: Error initializing Gemini client: {e}")
traceback.print_exc()
model = None
tools = []
# --- Gradio App Logic ---
def handle_function_call(function_call):
"""Executes the function call requested by the model."""
function_name = function_call.name
args = function_call.args # Dict-like object
print(f"Executing Function Call: {function_name} with args: {dict(args)}")
try:
if function_name == 'load_page':
url = args.get('url')
if url:
function_response_content = load_page(url=url)
MAX_RESPONSE_LEN = 50000
if len(function_response_content) > MAX_RESPONSE_LEN:
print(f"Tool Response truncated from {len(function_response_content)} to {MAX_RESPONSE_LEN} chars.")
function_response_content = function_response_content[:MAX_RESPONSE_LEN] + "\n\n[... Tool Response Truncated Due to Size Limit ...]"
else:
function_response_content = "Error: URL parameter was missing in the function call. Please ensure the 'url' argument is provided."
else:
print(f"Error: Received call for unknown function '{function_name}'")
function_response_content = f"Error: Unknown function '{function_name}' called by the model."
# Use genai.types for FunctionResponse and Part
function_response_part = genai.types.Part(
function_response=genai.types.FunctionResponse(
name=function_name,
response={'content': function_response_content}
)
)
print(f"Function Response generated for {function_name}")
return function_response_part
except Exception as e:
print(f"Error during execution of function '{function_name}': {e}")
traceback.print_exc()
# Use genai.types here too
return genai.types.Part(
function_response=genai.types.FunctionResponse(
name=function_name,
response={'error': f"Failed to execute function {function_name}: {str(e)}"}
)
)
def generate_response_with_tools(user_input, history_state):
"""Handles user input, interacts with Gemini (incl. tools), and manages history."""
if not model:
return [[None, "Error: The AI model (Gemini) could not be initialized. Please check the logs or API key configuration."]], history_state or []
if not user_input.strip():
return [[None, "Please enter a valid query."]], history_state or []
# --- History Management ---
conversation_history = history_state if isinstance(history_state, list) else []
# Use genai.types for Content and Part
conversation_history.append(genai.types.Content(role="user", parts=[genai.types.Part.from_text(user_input)]))
print(f"\n--- Sending to Gemini (History length: {len(conversation_history)}) ---")
MAX_HISTORY_TURNS = 10
max_history_items = MAX_HISTORY_TURNS * 2 + (1 if conversation_history and conversation_history[0].role == "system" else 0)
if len(conversation_history) > max_history_items:
print(f"Trimming conversation history from {len(conversation_history)} items to ~{max_history_items}")
if conversation_history[0].role == "system":
conversation_history = [conversation_history[0]] + conversation_history[-(max_history_items-1):]
else:
conversation_history = conversation_history[-max_history_items:]
# --- Interaction Loop ---
MAX_TOOL_LOOPS = 5
loop_count = 0
current_history_for_api = list(conversation_history)
final_bot_message = "" # Initialize variable to hold the final message text
try:
while loop_count < MAX_TOOL_LOOPS:
loop_count += 1
print(f"Generation loop {loop_count}/{MAX_TOOL_LOOPS}...")
response = model.generate_content(
current_history_for_api,
request_options={"timeout": 120},
)
if not response.candidates:
print("Warning: No candidates received from Gemini.")
final_bot_message = "[No response generated by the model.]"
# Use genai.types here
current_history_for_api.append(genai.types.Content(role="model", parts=[genai.types.Part.from_text(final_bot_message)]))
break
candidate = response.candidates[0]
# Access FinishReason via genai.types
finish_reason = candidate.finish_reason
# Append model's turn to history *before* potentially executing tools
# This includes text parts and potential function_call parts
if candidate.content:
current_history_for_api.append(candidate.content)
else:
print("Warning: Candidate content is empty.")
# Decide how to handle this - perhaps break or log and continue?
# If finish_reason indicates a stop, maybe just break.
# If it indicates TOOL_CALL without content, that's an error state.
# Check for safety or unexpected stops first
# Use genai.types for FinishReason comparison
if finish_reason not in (genai.types.Candidate.FinishReason.STOP, genai.types.Candidate.FinishReason.TOOL_CALL):
print(f"Warning: Generation stopped unexpectedly. Reason: {finish_reason.name}")
stop_reason_msg = f"[Model stopped generating. Reason: {finish_reason.name}]"
# Extract any partial text response
partial_text = ""
if candidate.content and candidate.content.parts:
partial_text = "".join([p.text for p in candidate.content.parts if p.text])
final_bot_message = (partial_text + "\n" if partial_text else "") + stop_reason_msg
# We already appended the content, so the history is up-to-date with the partial model turn.
break # Exit loop
# Check for Tool Call
# Use genai.types for FinishReason comparison
has_tool_call = finish_reason == genai.types.Candidate.FinishReason.TOOL_CALL
if has_tool_call:
print("Tool call requested by model.")
if not candidate.content or not candidate.content.parts:
print("Error: TOOL_CALL indicated but candidate content is empty.")
final_bot_message = "[Model indicated tool use but provided no details.]"
# Append error message as model turn?
# current_history_for_api.append(genai.types.Content(role="model", parts=[genai.types.Part.from_text(final_bot_message)]))
break # Exit loop
function_calls = [part.function_call for part in candidate.content.parts if hasattr(part, 'function_call')]
if not function_calls:
print("Warning: TOOL_CALL finish reason but no function_call part found in content.")
final_bot_message = "".join([p.text for p in candidate.content.parts if p.text]) # Capture any text
if not final_bot_message:
final_bot_message = "[Model indicated tool use but provided no callable function.]"
# Model turn with text (if any) is already in history
break # Exit loop
tool_responses = []
for func_call in function_calls:
if func_call: # Ensure it's not None
function_response_part = handle_function_call(func_call)
tool_responses.append(function_response_part)
else:
print("Warning: Encountered None value where function_call was expected.")
if not tool_responses:
print("Warning: No valid tool responses generated despite TOOL_CALL.")
# Decide how to proceed. Maybe break?
final_bot_message = "[Failed to process tool call request.]"
break
# Add the tool execution results to history
# Use genai.types for Content
current_history_for_api.append(genai.types.Content(role="tool", parts=tool_responses))
print("Added tool response(s) to history. Continuing loop...")
continue # Go back to the start of the while loop
else: # FinishReason == STOP
print("No tool call requested. Final response received.")
# Extract final text and any code suggestions/results
final_bot_message = ""
code_parts_display = []
if candidate.content and candidate.content.parts:
for part in candidate.content.parts:
if hasattr(part, 'text'):
final_bot_message += part.text
if hasattr(part, 'executable_code') and part.executable_code:
lang = part.executable_code.language.name.lower() if part.executable_code.language else "python"
code = part.executable_code.code
code_parts_display.append(f"Suggested Code ({lang}):\n```{'python' if lang == 'unknown_language' else lang}\n{code}\n```")
elif hasattr(part, 'code_execution_result') and part.code_execution_result:
outcome_str = "Success" if part.code_execution_result.outcome == genai.types.ExecutableCodeResponse.Outcome.OK else "Failure" # Adjusted reference
code_parts_display.append(f"Code Execution Result ({outcome_str}):\n```\n{part.code_execution_result.output}\n```")
if code_parts_display:
final_bot_message += "\n\n" + "\n\n".join(code_parts_display)
if not final_bot_message.strip():
final_bot_message = "[Assistant completed its turn without generating text output.]"
# The empty model turn is already in history
break # Exit the while loop
# End of while loop
if loop_count >= MAX_TOOL_LOOPS:
print(f"Warning: Reached maximum tool execution loops ({MAX_TOOL_LOOPS}).")
final_bot_message = (final_bot_message + "\n\n" if final_bot_message else "") + f"[Warning: Reached maximum tool execution loops ({MAX_TOOL_LOOPS}). The final response might be incomplete.]"
# Ensure the loop warning is part of the last model message if needed
if current_history_for_api[-1].role == "model":
# Append warning to the existing last message parts (simplistic)
# Use genai.types for Part
current_history_for_api[-1].parts.append(genai.types.Part.from_text(f"\n[Warning: Max loops reached]"))
else:
# Use genai.types for Content and Part
current_history_for_api.append(genai.types.Content(role="model", parts=[genai.types.Part.from_text(final_bot_message)]))
print("--- Response Generation Complete ---")
# --- Format final output for Gradio Chatbot ---
chatbot_display_list = []
user_msg_buffer = None # To hold user message until bot reply comes
for i, content in enumerate(current_history_for_api):
if content.role == "system": continue # Skip system prompt in display
# Combine parts into a single message string for display
display_text = ""
if content.parts: # Check if parts exist
for part in content.parts:
# Check attributes safely before accessing
if hasattr(part, 'text'):
display_text += part.text + "\n"
elif hasattr(part, 'executable_code') and part.executable_code:
lang = part.executable_code.language.name.lower() if hasattr(part.executable_code, 'language') and part.executable_code.language else "python"
code = part.executable_code.code if hasattr(part.executable_code, 'code') else ""
display_text += f"\nSuggested Code ({lang}):\n```{'python' if lang == 'unknown_language' else lang}\n{code}\n```\n"
elif hasattr(part, 'code_execution_result') and part.code_execution_result:
# Use genai.types.ExecutableCodeResponse.Outcome
outcome_ok = genai.types.ExecutableCodeResponse.Outcome.OK if hasattr(genai.types, 'ExecutableCodeResponse') else 1 # Fallback if type not found? Be careful
outcome_str = "Success" if part.code_execution_result.outcome == outcome_ok else "Failure"
output = part.code_execution_result.output if hasattr(part.code_execution_result, 'output') else ""
display_text += f"\nCode Execution Result ({outcome_str}):\n```\n{output}\n```\n"
# Optional: Display indications of tool use (can make chat noisy)
# elif hasattr(part, 'function_call') and part.function_call: display_text += f"[Requesting tool: {part.function_call.name}...]\n"
# elif hasattr(part, 'function_response') and part.function_response: display_text += f"[Tool '{part.function_response.name}' response processed.]\n"
display_text = display_text.strip()
if not display_text and content.role != 'tool': continue # Skip empty non-tool turns
if content.role == "user":
user_msg_buffer = display_text # Store user message
# Don't append to display list yet, wait for model response
elif content.role == "model":
if user_msg_buffer is not None:
# We have a user message and now the model's response
chatbot_display_list.append([user_msg_buffer, display_text])
user_msg_buffer = None # Clear buffer
else:
# Model message without preceding user message (e.g., initial greeting or consecutive model turns)
chatbot_display_list.append([None, display_text])
# Ignore 'tool' role messages in the chatbot display list
# If the loop ended with a user message still in the buffer (e.g., error before model reply)
if user_msg_buffer is not None:
chatbot_display_list.append([user_msg_buffer, None]) # Show user msg, no bot reply yet
return chatbot_display_list, current_history_for_api
except Exception as e:
print(f"ERROR during Gemini generation or tool processing: {str(e)}")
traceback.print_exc()
error_message = f"An error occurred: {str(e)}"
# Return error in chatbot format, maintain previous history state
# Build display history from existing state + error
error_display_list = []
if isinstance(history_state, list):
# Simplified history-to-display conversion for error case
temp_user_msg = None
for content in history_state:
if content.role == "user": temp_user_msg = content.parts[0].text
elif content.role == "model" and temp_user_msg:
model_text = "".join([p.text for p in content.parts if hasattr(p, 'text')])
error_display_list.append([temp_user_msg, model_text])
temp_user_msg = None
if temp_user_msg: error_display_list.append([temp_user_msg, None]) # Append dangling user message
error_display_list.append([None, error_message]) # Add the error message
# Return the state *before* the error occurred
return error_display_list, conversation_history[:-1] # Exclude the failed user turn
# --- Gradio Interface ---
with gr.Blocks(title="Gemini AI Assistant w/ Tools", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# π Gemini AI Assistant ({MODEL_NAME})")
gr.Markdown("Ask questions, request info from specific URLs, or ask for code/calculations. Uses function calling and code execution.")
chatbot_display = gr.Chatbot(
label="Conversation",
bubble_full_width=False,
height=600,
show_copy_button=True,
render_markdown=True
)
with gr.Row(): # Arrange input and buttons horizontally
msg_input = gr.Textbox(
label="Your Query",
placeholder="Ask anything...",
lines=3,
scale=4 # Input takes more space
)
with gr.Column(scale=1, min_width=150): # Column for buttons
send_btn = gr.Button("β‘οΈ Send", variant="primary")
clear_btn = gr.ClearButton(value="ποΈ Clear Chat")
# Hidden state to store the raw conversation history (list of genai.types.Content)
chat_history_state = gr.State([])
def user_message_update(user_message, history_display_list):
"""Appends the user's message to the display list and clears the input."""
if not user_message.strip():
return gr.update(value=""), history_display_list
return gr.update(value=""), history_display_list + [[user_message, None]] # Add placeholder for bot response
def bot_response_update(history_display_list, history_state):
"""Calls the backend Gemini function and updates display/state."""
if not history_display_list or history_display_list[-1][1] is not None:
# Only proceed if there is a pending user message (placeholder is None)
print("Bot update called without pending user message.")
# Should return current state if called incorrectly
return history_display_list, history_state
user_message = history_display_list[-1][0]
print(f"User message being sent to backend: {user_message}")
# Call the main Gemini interaction function
updated_display_list, updated_history_state = generate_response_with_tools(user_message, history_state)
return updated_display_list, updated_history_state
# --- Event Listeners ---
msg_input.submit(
user_message_update,
[msg_input, chatbot_display],
[msg_input, chatbot_display],
queue=False,
).then(
bot_response_update,
[chatbot_display, chat_history_state],
[chatbot_display, chat_history_state] # Update display and state
)
send_btn.click(
user_message_update,
[msg_input, chatbot_display],
[msg_input, chatbot_display],
queue=False,
).then(
bot_response_update,
[chatbot_display, chat_history_state],
[chatbot_display, chat_history_state]
)
# Setup the ClearButton to target the necessary components, including the state
# Use list comprehension/lambda if add doesn't accept state directly, or define custom clear fn
#clear_btn.add(components=[msg_input, chatbot_display, chat_history_state]) # May not work with state
# Custom clear function is safer for state
def clear_all():
return ["", None, []] # Clears Textbox, Chatbot display, State
clear_btn.click(clear_all, [], [msg_input, chatbot_display, chat_history_state], queue=False)
if __name__ == "__main__":
print("Starting Gradio App...")
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
print("Gradio App Stopped.") |