File size: 5,252 Bytes
3fd0067
740846d
b8a34b4
 
e106c9a
 
3fd0067
 
bdfd7a5
3fd0067
 
 
 
 
 
 
 
 
 
 
 
bdfd7a5
3fd0067
 
 
 
 
 
 
 
 
 
e106c9a
3fd0067
 
e106c9a
3fd0067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740846d
e106c9a
 
 
 
 
c02bb52
e106c9a
 
3fd0067
 
 
 
 
 
 
e106c9a
3fd0067
 
 
 
 
 
 
 
 
 
 
 
740846d
3fd0067
 
740846d
3fd0067
 
 
 
e106c9a
3fd0067
af3c122
3fd0067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e106c9a
3fd0067
cb63aa0
e106c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd0067
 
 
 
e106c9a
3fd0067
e106c9a
3fd0067
 
e106c9a
3fd0067
af3c122
b8a34b4
3fd0067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfd7a5
5f3d5cb
e106c9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import gradio as gr
from google import genai
from google.genai import types
import requests
import markdownify
from urllib.robotparser import RobotFileParser
from urllib.parse import urlparse

# Configure browser tools
def can_crawl_url(url: str, user_agent: str = "*") -> bool:
    """Check robots.txt permissions for a URL"""
    try:
        parsed_url = urlparse(url)
        robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
        rp = RobotFileParser(robots_url)
        rp.read()
        return rp.can_fetch(user_agent, url)
    except Exception as e:
        print(f"Error checking robots.txt: {e}")
        return False

def load_page(url: str) -> str:
    """Load webpage content as markdown"""
    if not can_crawl_url(url):
        return f"URL {url} failed robots.txt check"
    try:
        response = requests.get(url, timeout=10)
        return markdownify.markdownify(response.text)
    except Exception as e:
        return f"Error loading page: {str(e)}"

# Initialize Gemini client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
MODEL = "gemini-2.0-flash"

TOOLS = [
    types.Tool(
        function_declarations=[
            types.FunctionDeclaration(
                name="load_page",
                description="Load webpage content as markdown",
                parameters={
                    "type": "object",
                    "properties": {
                        "url": {"type": "string", "description": "Full URL to load"}
                    },
                    "required": ["url"]
                }
            )
        ]
    ),
    types.Tool(google_search=types.GoogleSearch()),
    types.Tool(code_execution=types.ToolCodeExecution())
]

SYSTEM_INSTRUCTION = """You are an AI assistant with:
1. Web browsing capabilities
2. Code execution for calculations
3. Data analysis skills
Use the most appropriate tool for each query."""

def format_response(parts):
    """Format response parts with proper Markdown formatting"""
    formatted = []
    for part in parts:
        if part.text:
            formatted.append(part.text)
        if part.executable_code:
            formatted.append(f"```python\n{part.executable_code.code}\n```")
        if part.code_execution_result:
            formatted.append(f"**Result**:\n```\n{part.code_execution_result.output}\n```")
    return "\n\n".join(formatted)

def generate_response(user_input):
    full_response = ""
    chat = client.chats.create(
        model=MODEL,
        config=types.GenerateContentConfig(
            temperature=0.7,
            tools=TOOLS,
            system_instruction=SYSTEM_INSTRUCTION
        )
    )
    
    # Initial request
    response = chat.send_message(user_input)
    
    # Process all response parts
    response_parts = []
    for part in response.candidates[0].content.parts:
        response_parts.append(part)
        full_response = format_response(response_parts)
        yield full_response
        
        # Handle function calls
        if part.function_call:
            fn = part.function_call
            if fn.name == "load_page":
                result = load_page(**fn.args)
                chat.send_message(
                    types.Content(
                        parts=[
                            types.Part(
                                function_response=types.FunctionResponse(
                                    name=fn.name,
                                    id=fn.id,
                                    response={"result": result}
                                )
                            )
                        ]
                    )
                )
                # Get final response after tool execution
                final_response = chat.send_message("")
                for final_part in final_response.candidates[0].content.parts:
                    response_parts.append(final_part)
                    full_response = format_response(response_parts)
                    yield full_response

# Create Gradio interface
with gr.Blocks(
    title="Gemini AI Assistant",
    css=""".markdown-output {
        padding: 20px;
        border-radius: 5px;
        background: #f9f9f9;
    }
    .markdown-output code {
        background: #f3f3f3;
        padding: 2px 5px;
        border-radius: 3px;
    }"""
) as demo:
    gr.Markdown("# πŸš€ Gemini AI Assistant")
    gr.Markdown("Web β€’ Code β€’ Data Analysis")
    
    with gr.Row():
        input_box = gr.Textbox(
            label="Your Query",
            placeholder="Ask anything...",
            lines=3,
            max_lines=10
        )
        output_box = gr.Markdown(
            label="Response",
            elem_classes="markdown-output"
        )
    
    with gr.Row():
        submit_btn = gr.Button("Submit", variant="primary")
        clear_btn = gr.Button("Clear")
    
    def clear():
        return ["", ""]
    
    submit_btn.click(
        fn=generate_response,
        inputs=input_box,
        outputs=output_box,
        queue=True
    )
    
    clear_btn.click(
        fn=clear,
        inputs=[],
        outputs=[input_box, output_box]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)