File size: 5,252 Bytes
3fd0067 740846d b8a34b4 e106c9a 3fd0067 bdfd7a5 3fd0067 bdfd7a5 3fd0067 e106c9a 3fd0067 e106c9a 3fd0067 740846d e106c9a c02bb52 e106c9a 3fd0067 e106c9a 3fd0067 740846d 3fd0067 740846d 3fd0067 e106c9a 3fd0067 af3c122 3fd0067 e106c9a 3fd0067 cb63aa0 e106c9a 3fd0067 e106c9a 3fd0067 e106c9a 3fd0067 e106c9a 3fd0067 af3c122 b8a34b4 3fd0067 bdfd7a5 5f3d5cb e106c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import gradio as gr
from google import genai
from google.genai import types
import requests
import markdownify
from urllib.robotparser import RobotFileParser
from urllib.parse import urlparse
# Configure browser tools
def can_crawl_url(url: str, user_agent: str = "*") -> bool:
"""Check robots.txt permissions for a URL"""
try:
parsed_url = urlparse(url)
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
rp = RobotFileParser(robots_url)
rp.read()
return rp.can_fetch(user_agent, url)
except Exception as e:
print(f"Error checking robots.txt: {e}")
return False
def load_page(url: str) -> str:
"""Load webpage content as markdown"""
if not can_crawl_url(url):
return f"URL {url} failed robots.txt check"
try:
response = requests.get(url, timeout=10)
return markdownify.markdownify(response.text)
except Exception as e:
return f"Error loading page: {str(e)}"
# Initialize Gemini client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
MODEL = "gemini-2.0-flash"
TOOLS = [
types.Tool(
function_declarations=[
types.FunctionDeclaration(
name="load_page",
description="Load webpage content as markdown",
parameters={
"type": "object",
"properties": {
"url": {"type": "string", "description": "Full URL to load"}
},
"required": ["url"]
}
)
]
),
types.Tool(google_search=types.GoogleSearch()),
types.Tool(code_execution=types.ToolCodeExecution())
]
SYSTEM_INSTRUCTION = """You are an AI assistant with:
1. Web browsing capabilities
2. Code execution for calculations
3. Data analysis skills
Use the most appropriate tool for each query."""
def format_response(parts):
"""Format response parts with proper Markdown formatting"""
formatted = []
for part in parts:
if part.text:
formatted.append(part.text)
if part.executable_code:
formatted.append(f"```python\n{part.executable_code.code}\n```")
if part.code_execution_result:
formatted.append(f"**Result**:\n```\n{part.code_execution_result.output}\n```")
return "\n\n".join(formatted)
def generate_response(user_input):
full_response = ""
chat = client.chats.create(
model=MODEL,
config=types.GenerateContentConfig(
temperature=0.7,
tools=TOOLS,
system_instruction=SYSTEM_INSTRUCTION
)
)
# Initial request
response = chat.send_message(user_input)
# Process all response parts
response_parts = []
for part in response.candidates[0].content.parts:
response_parts.append(part)
full_response = format_response(response_parts)
yield full_response
# Handle function calls
if part.function_call:
fn = part.function_call
if fn.name == "load_page":
result = load_page(**fn.args)
chat.send_message(
types.Content(
parts=[
types.Part(
function_response=types.FunctionResponse(
name=fn.name,
id=fn.id,
response={"result": result}
)
)
]
)
)
# Get final response after tool execution
final_response = chat.send_message("")
for final_part in final_response.candidates[0].content.parts:
response_parts.append(final_part)
full_response = format_response(response_parts)
yield full_response
# Create Gradio interface
with gr.Blocks(
title="Gemini AI Assistant",
css=""".markdown-output {
padding: 20px;
border-radius: 5px;
background: #f9f9f9;
}
.markdown-output code {
background: #f3f3f3;
padding: 2px 5px;
border-radius: 3px;
}"""
) as demo:
gr.Markdown("# π Gemini AI Assistant")
gr.Markdown("Web β’ Code β’ Data Analysis")
with gr.Row():
input_box = gr.Textbox(
label="Your Query",
placeholder="Ask anything...",
lines=3,
max_lines=10
)
output_box = gr.Markdown(
label="Response",
elem_classes="markdown-output"
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear")
def clear():
return ["", ""]
submit_btn.click(
fn=generate_response,
inputs=input_box,
outputs=output_box,
queue=True
)
clear_btn.click(
fn=clear,
inputs=[],
outputs=[input_box, output_box]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |