File size: 14,817 Bytes
eed5424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
eed5424
 
 
513f7a6
f0fbb06
eed5424
 
 
 
513f7a6
 
 
f0fbb06
eed5424
 
 
 
 
513f7a6
eed5424
 
 
 
513f7a6
eed5424
513f7a6
 
eed5424
 
 
 
 
 
 
 
 
 
 
 
 
513f7a6
eed5424
 
 
 
 
513f7a6
eed5424
 
 
513f7a6
 
eed5424
ce67cd9
f0fbb06
 
 
eed5424
513f7a6
eed5424
f0fbb06
 
 
 
 
eed5424
 
513f7a6
eed5424
 
f0fbb06
 
 
513f7a6
eed5424
513f7a6
 
 
eed5424
 
 
f0fbb06
 
eed5424
f0fbb06
eed5424
f0fbb06
 
eed5424
 
513f7a6
eed5424
 
 
 
ce67cd9
 
eed5424
 
 
 
 
513f7a6
eed5424
 
 
 
 
 
 
 
513f7a6
eed5424
 
513f7a6
f0fbb06
ce67cd9
eed5424
 
 
513f7a6
 
 
ce67cd9
513f7a6
eed5424
f0fbb06
513f7a6
ce67cd9
 
 
f0fbb06
513f7a6
f0fbb06
eed5424
 
513f7a6
 
 
eed5424
f0fbb06
513f7a6
 
eed5424
 
513f7a6
f0fbb06
 
ce67cd9
f0fbb06
 
 
 
 
 
ce67cd9
 
 
 
 
f0fbb06
 
 
 
 
 
 
ce67cd9
 
f0fbb06
 
 
 
 
 
 
 
 
 
eed5424
f0fbb06
ce67cd9
f0fbb06
 
 
 
 
513f7a6
f0fbb06
 
 
 
ce67cd9
f0fbb06
ce67cd9
f0fbb06
 
eed5424
 
 
 
 
 
f0fbb06
 
eed5424
 
 
 
513f7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
513f7a6
 
 
f0fbb06
513f7a6
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
513f7a6
 
 
 
 
 
 
 
f0fbb06
 
 
 
513f7a6
 
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
513f7a6
 
 
 
f0fbb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513f7a6
f0fbb06
 
 
 
 
 
 
 
 
513f7a6
f0fbb06
eed5424
 
513f7a6
 
 
 
f0fbb06
 
513f7a6
eed5424
513f7a6
eed5424
f0fbb06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import gradio as gr
import onnxruntime_genai as og
import time
import os
from huggingface_hub import snapshot_download
import argparse
import logging

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- Configuration ---
MODEL_REPO = "microsoft/Phi-4-mini-instruct-onnx"

# --- Defaulting to CPU INT4 for Hugging Face Spaces ---
EXECUTION_PROVIDER = "cpu" # Corresponds to installing 'onnxruntime-genai'
MODEL_VARIANT_GLOB = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

# --- (Optional) Alternative GPU Configuration ---
# EXECUTION_PROVIDER = "cuda" # Corresponds to installing 'onnxruntime-genai-cuda'
# MODEL_VARIANT_GLOB = "gpu/gpu-int4-rtn-block-32/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

LOCAL_MODEL_DIR = "./phi4-mini-onnx-model" # Directory within the Space
HF_LOGO_URL = "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
HF_MODEL_URL = f"https://huggingface.co/{MODEL_REPO}"
ORT_GENAI_URL = "https://github.com/microsoft/onnxruntime-genai"
PHI_LOGO_URL = "https://microsoft.github.io/phi/assets/img/logo-final.png" # Phi logo for bot avatar

# Global variables for model and tokenizer
model = None
tokenizer = None
model_variant_name = os.path.basename(os.path.dirname(MODEL_VARIANT_GLOB)) # For display
model_status = "Initializing..."

# --- Model Download and Load ---
def initialize_model():
    """Downloads and loads the ONNX model and tokenizer."""
    global model, tokenizer, model_status
    logging.info("--- Initializing ONNX Runtime GenAI ---")
    model_status = "Downloading model..."
    logging.info(model_status)

    # --- Download ---
    model_variant_dir = os.path.join(LOCAL_MODEL_DIR, os.path.dirname(MODEL_VARIANT_GLOB))
    if os.path.exists(model_variant_dir) and os.listdir(model_variant_dir):
        logging.info(f"Model variant found in {model_variant_dir}. Skipping download.")
        model_path = model_variant_dir
    else:
        logging.info(f"Downloading model variant '{MODEL_VARIANT_GLOB}' from {MODEL_REPO}...")
        try:
            snapshot_download(
                MODEL_REPO,
                allow_patterns=[MODEL_VARIANT_GLOB],
                local_dir=LOCAL_MODEL_DIR,
                local_dir_use_symlinks=False
            )
            model_path = model_variant_dir
            logging.info(f"Model downloaded to: {model_path}")
        except Exception as e:
            logging.error(f"Error downloading model: {e}", exc_info=True)
            model_status = f"Error downloading model: {e}"
            raise RuntimeError(f"Failed to download model: {e}")

    # --- Load ---
    model_status = f"Loading model ({EXECUTION_PROVIDER.upper()})..."
    logging.info(model_status)
    try:
        # FIX: Removed explicit DeviceType. Let the library infer or use string if needed by constructor.
        # The simple constructor often works by detecting the installed ORT package.
        logging.info(f"Using provider based on installed package (expecting: {EXECUTION_PROVIDER})")
        model = og.Model(model_path) # Simplified model loading
        tokenizer = og.Tokenizer(model)
        model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
        logging.info("Model and Tokenizer loaded successfully.")
    except AttributeError as ae:
         logging.error(f"AttributeError during model/tokenizer init: {ae}", exc_info=True)
         logging.error("This might indicate an installation issue or version incompatibility with onnxruntime_genai.")
         model_status = f"Init Error: {ae}"
         raise RuntimeError(f"Failed to initialize model/tokenizer: {ae}")
    except Exception as e:
        logging.error(f"Error loading model or tokenizer: {e}", exc_info=True)
        model_status = f"Error loading model: {e}"
        raise RuntimeError(f"Failed to load model: {e}")

# --- Generation Function (Core Logic) ---
def generate_response_stream(prompt, history, max_length, temperature, top_p, top_k):
    """Generates a response using the Phi-4 ONNX model, yielding text chunks."""
    global model_status
    if not model or not tokenizer:
        model_status = "Error: Model not initialized!"
        yield "Error: Model not initialized. Please check logs."
        return

    # --- Prepare the prompt using the Phi-4 instruct format ---
    full_prompt = ""
    # History format is [[user1, bot1], [user2, bot2], ...]
    for user_msg, assistant_msg in history: # history here is *before* the current prompt
        full_prompt += f"<|user|>\n{user_msg}<|end|>\n"
        if assistant_msg: # Append assistant message only if it exists
             full_prompt += f"<|assistant|>\n{assistant_msg}<|end|>\n"

    # Add the current user prompt and the trigger for the assistant's response
    full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"

    logging.info(f"Generating response (MaxL: {max_length}, Temp: {temperature}, TopP: {top_p}, TopK: {top_k})")

    try:
        input_tokens = tokenizer.encode(full_prompt)

        # FIX: Removed eos_token_id and pad_token_id as they are not attributes
        # of onnxruntime_genai.Tokenizer and likely handled internally by the generator.
        search_options = {
            "max_length": max_length,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "do_sample": True,
        }

        params = og.GeneratorParams(model)
        params.set_search_options(**search_options)
        params.input_ids = input_tokens

        start_time = time.time()
        generator = og.Generator(model, params)
        model_status = "Generating..." # Update status indicator
        logging.info("Streaming response...")

        first_token_time = None
        token_count = 0
        # Rely primarily on generator.is_done()
        while not generator.is_done():
            generator.compute_logits()
            generator.generate_next_token()
            if first_token_time is None:
                 first_token_time = time.time() # Record time to first token

            next_token = generator.get_next_tokens()[0]

            decoded_chunk = tokenizer.decode([next_token])
            token_count += 1

            # Secondary check: Stop if the model explicitly generates the <|end|> string literal.
            if decoded_chunk == "<|end|>":
                logging.info("Assistant explicitly generated <|end|> token string.")
                break

            yield decoded_chunk # Yield just the text chunk

        end_time = time.time()
        ttft = (first_token_time - start_time) * 1000 if first_token_time else -1
        total_time = end_time - start_time
        tps = (token_count / total_time) if total_time > 0 else 0

        logging.info(f"Generation complete. Tokens: {token_count}, Total Time: {total_time:.2f}s, TTFT: {ttft:.2f}ms, TPS: {tps:.2f}")
        model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})" # Reset status

    except Exception as e:
        logging.error(f"Error during generation: {e}", exc_info=True)
        model_status = f"Error during generation: {e}"
        yield f"\n\nSorry, an error occurred during generation: {e}" # Yield error message


# --- Gradio Interface Functions ---

# 1. Function to add user message to chat history
def add_user_message(user_message, history):
    """Adds the user's message to the chat history for display."""
    if not user_message:
        # Returning original history prevents adding empty message
        # Use gr.Warning or gr.Info for user feedback? Or raise gr.Error?
        # gr.Warning("Please enter a message.") # Shows warning toast
        return "", history # Clear input, return unchanged history
        # raise gr.Error("Please enter a message.") # Stops execution, shows error
    history = history + [[user_message, None]] # Append user message, leave bot response None
    return "", history # Clear input textbox, return updated history

# 2. Function to handle bot response generation and streaming
def generate_bot_response(history, max_length, temperature, top_p, top_k):
    """Generates the bot's response based on the history and streams it."""
    if not history or history[-1][1] is not None:
        # This case means user submitted empty message or something went wrong
        # No need to generate if the last turn isn't user's pending turn
        return history

    user_prompt = history[-1][0] # Get the latest user prompt
    # Prepare history for the model (all turns *before* the current one)
    model_history = history[:-1]

    # Get the generator stream
    response_stream = generate_response_stream(
        user_prompt, model_history, max_length, temperature, top_p, top_k
    )

    # Stream the response chunks back to Gradio
    history[-1][1] = "" # Initialize the bot response string in the history
    for chunk in response_stream:
        history[-1][1] += chunk # Append the chunk to the bot's message in history
        yield history # Yield the *entire updated history* back to Chatbot

# 3. Function to clear chat
def clear_chat():
    """Clears the chat history and input."""
    global model_status # Keep model status indicator updated
    # Reset status only if it was showing an error from generation maybe?
    # Or just always reset to Ready if model is loaded.
    if model and tokenizer and not model_status.startswith("Error") and not model_status.startswith("FATAL"):
         model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
    # Keep the original error if init failed, otherwise show ready status
    return None, [], model_status # Clear Textbox, Chatbot history, and update status display


# --- Initialize Model on App Start ---
try:
    initialize_model()
except Exception as e:
    print(f"FATAL: Model initialization failed: {e}")
    # model_status is already set inside initialize_model on error


# --- Gradio Interface ---
logging.info("Creating Gradio Interface...")

# Select a theme
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="sky",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)

with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
    # Header Section
    with gr.Row(equal_height=False):
        with gr.Column(scale=3):
            gr.Markdown(f"""
            # Phi-4 Mini Instruct ONNX Chat 🤖
            Interact with the quantized `{model_variant_name}` version of [`{MODEL_REPO}`]({HF_MODEL_URL})
            running efficiently via [`onnxruntime-genai`]({ORT_GENAI_URL}) ({EXECUTION_PROVIDER.upper()}).
            """)
        with gr.Column(scale=1, min_width=150):
             gr.Image(HF_LOGO_URL, elem_id="hf-logo", show_label=False, show_download_button=False, container=False, height=50)
             # Use the global model_status variable for the initial value
             model_status_text = gr.Textbox(value=model_status, label="Model Status", interactive=False, max_lines=2)


    # Main Layout (Chat on Left, Settings on Right)
    with gr.Row():
        # Chat Column
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                label="Conversation",
                height=600,
                layout="bubble",
                bubble_full_width=False,
                avatar_images=(None, PHI_LOGO_URL) # (user, bot)
            )
            with gr.Row():
                 prompt_input = gr.Textbox(
                    label="Your Message",
                    placeholder="<|user|>\nType your message here...\n<|end|>",
                    lines=4,
                    scale=9 # Make textbox wider
                 )
                 # Combine Send and Clear Buttons Vertically? Or keep side-by-side? Side-by-side looks better
                 with gr.Column(scale=1, min_width=120):
                     submit_button = gr.Button("Send", variant="primary", size="lg")
                     clear_button = gr.Button("🗑️ Clear Chat", variant="secondary")


        # Settings Column
        with gr.Column(scale=1, min_width=250):
            gr.Markdown("### ⚙️ Generation Settings")
            with gr.Group(): # Group settings visually
                max_length = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Length", info="Max tokens in response.")
                temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.7, step=0.05, label="Temperature", info="0.0 = deterministic\n>1.0 = more random")
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.")
                top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K", info="Limit to K most likely tokens (0=disable).")

            gr.Markdown("---") # Separator
            gr.Markdown("ℹ️ **Note:** Uses Phi-4 instruction format: \n`<|user|>\nPROMPT<|end|>\n<|assistant|>`")
            gr.Markdown(f"Running on **{EXECUTION_PROVIDER.upper()}**.")


    # Event Listeners (Connecting UI components to functions)

    # Define inputs for the bot response generator
    bot_response_inputs = [chatbot, max_length, temperature, top_p, top_k]

    # Chain actions:
    # 1. User presses Enter or clicks Send
    # 2. `add_user_message` updates history, clears input
    # 3. `generate_bot_response` streams bot reply into history
    submit_event = prompt_input.submit(
        fn=add_user_message,
        inputs=[prompt_input, chatbot],
        outputs=[prompt_input, chatbot], # Update textbox and history
        queue=False, # Submit is fast
    ).then(
        fn=generate_bot_response, # Call the generator function
        inputs=bot_response_inputs, # Pass history and params
        outputs=[chatbot], # Stream output directly to chatbot
        api_name="chat" # Optional: name for API usage
    )

    submit_button.click( # Mirror actions for button click
        fn=add_user_message,
        inputs=[prompt_input, chatbot],
        outputs=[prompt_input, chatbot],
        queue=False,
    ).then(
        fn=generate_bot_response,
        inputs=bot_response_inputs,
        outputs=[chatbot],
        api_name=False # Don't expose button click as separate API endpoint
    )

    # Clear button action
    clear_button.click(
        fn=clear_chat,
        inputs=None,
        outputs=[prompt_input, chatbot, model_status_text], # Clear input, chat, and update status text
        queue=False # Clearing is fast
    )

# Launch the Gradio app
logging.info("Launching Gradio App...")
demo.queue(max_size=20) # Enable queuing with a limit
demo.launch(show_error=True, max_threads=40)