Spaces:
Build error
Build error
import torch | |
from torch.utils import cpp_extension | |
from setuptools import setup, find_packages | |
import subprocess | |
import sys | |
import warnings | |
import os | |
# ninja build does not work unless include_dirs are abs path | |
this_dir = os.path.dirname(os.path.abspath(__file__)) | |
def get_cuda_bare_metal_version(cuda_dir): | |
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) | |
output = raw_output.split() | |
release_idx = output.index("release") + 1 | |
release = output[release_idx].split(".") | |
bare_metal_major = release[0] | |
bare_metal_minor = release[1][0] | |
return raw_output, bare_metal_major, bare_metal_minor | |
if not torch.cuda.is_available(): | |
# https://github.com/NVIDIA/apex/issues/486 | |
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), | |
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). | |
print('\nWarning: Torch did not find available GPUs on this system.\n', | |
'If your intention is to cross-compile, this is not an error.\n' | |
'By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n' | |
'Volta (compute capability 7.0), Turing (compute capability 7.5),\n' | |
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n' | |
'If you wish to cross-compile for a single specific architecture,\n' | |
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') | |
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: | |
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME) | |
if int(bare_metal_major) == 11: | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" | |
else: | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" | |
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) | |
TORCH_MAJOR = int(torch.__version__.split('.')[0]) | |
TORCH_MINOR = int(torch.__version__.split('.')[1]) | |
if TORCH_MAJOR == 0 and TORCH_MINOR < 4: | |
raise RuntimeError("Apex requires Pytorch 0.4 or newer.\n" + | |
"The latest stable release can be obtained from https://pytorch.org/") | |
cmdclass = {} | |
ext_modules = [] | |
extras = {} | |
if "--pyprof" in sys.argv: | |
string = "\n\nPyprof has been moved to its own dedicated repository and will " + \ | |
"soon be removed from Apex. Please visit\n" + \ | |
"https://github.com/NVIDIA/PyProf\n" + \ | |
"for the latest version." | |
warnings.warn(string, DeprecationWarning) | |
with open('requirements.txt') as f: | |
required_packages = f.read().splitlines() | |
extras['pyprof'] = required_packages | |
try: | |
sys.argv.remove("--pyprof") | |
except: | |
pass | |
else: | |
warnings.warn("Option --pyprof not specified. Not installing PyProf dependencies!") | |
if "--cpp_ext" in sys.argv or "--cuda_ext" in sys.argv: | |
if TORCH_MAJOR == 0: | |
raise RuntimeError("--cpp_ext requires Pytorch 1.0 or later, " | |
"found torch.__version__ = {}".format(torch.__version__)) | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if "--cpp_ext" in sys.argv: | |
from torch.utils.cpp_extension import CppExtension | |
sys.argv.remove("--cpp_ext") | |
ext_modules.append( | |
CppExtension('apex_C', | |
['csrc/flatten_unflatten.cpp',])) | |
def get_cuda_bare_metal_version(cuda_dir): | |
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) | |
output = raw_output.split() | |
release_idx = output.index("release") + 1 | |
release = output[release_idx].split(".") | |
bare_metal_major = release[0] | |
bare_metal_minor = release[1][0] | |
return raw_output, bare_metal_major, bare_metal_minor | |
def check_cuda_torch_binary_vs_bare_metal(cuda_dir): | |
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) | |
torch_binary_major = torch.version.cuda.split(".")[0] | |
torch_binary_minor = torch.version.cuda.split(".")[1] | |
print("\nCompiling cuda extensions with") | |
print(raw_output + "from " + cuda_dir + "/bin\n") | |
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): | |
raise RuntimeError("Cuda extensions are being compiled with a version of Cuda that does " + | |
"not match the version used to compile Pytorch binaries. " + | |
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + | |
"In some cases, a minor-version mismatch will not cause later errors: " + | |
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " | |
"You can try commenting out this check (at your own risk).") | |
# Set up macros for forward/backward compatibility hack around | |
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e | |
# and | |
# https://github.com/NVIDIA/apex/issues/456 | |
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac | |
version_ge_1_1 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0): | |
version_ge_1_1 = ['-DVERSION_GE_1_1'] | |
version_ge_1_3 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2): | |
version_ge_1_3 = ['-DVERSION_GE_1_3'] | |
version_ge_1_5 = [] | |
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4): | |
version_ge_1_5 = ['-DVERSION_GE_1_5'] | |
version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5 | |
if "--distributed_adam" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--distributed_adam") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--distributed_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='distributed_adam_cuda', | |
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_adam.cpp', | |
'apex/contrib/csrc/optimizers/multi_tensor_distopt_adam_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, | |
'nvcc':['-O3', | |
'--use_fast_math'] + version_dependent_macros})) | |
if "--distributed_lamb" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--distributed_lamb") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--distributed_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='distributed_lamb_cuda', | |
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb.cpp', | |
'apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, | |
'nvcc':['-O3', | |
'--use_fast_math'] + version_dependent_macros})) | |
if "--cuda_ext" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--cuda_ext") | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--cuda_ext was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
check_cuda_torch_binary_vs_bare_metal(torch.utils.cpp_extension.CUDA_HOME) | |
ext_modules.append( | |
CUDAExtension(name='amp_C', | |
sources=['csrc/amp_C_frontend.cpp', | |
'csrc/multi_tensor_sgd_kernel.cu', | |
'csrc/multi_tensor_scale_kernel.cu', | |
'csrc/multi_tensor_axpby_kernel.cu', | |
'csrc/multi_tensor_l2norm_kernel.cu', | |
'csrc/multi_tensor_lamb_stage_1.cu', | |
'csrc/multi_tensor_lamb_stage_2.cu', | |
'csrc/multi_tensor_adam.cu', | |
'csrc/multi_tensor_adagrad.cu', | |
'csrc/multi_tensor_novograd.cu', | |
'csrc/multi_tensor_lamb.cu'], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-lineinfo', | |
'-O3', | |
# '--resource-usage', | |
'--use_fast_math'] + version_dependent_macros})) | |
ext_modules.append( | |
CUDAExtension(name='syncbn', | |
sources=['csrc/syncbn.cpp', | |
'csrc/welford.cu'], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-O3'] + version_dependent_macros})) | |
ext_modules.append( | |
CUDAExtension(name='fused_layer_norm_cuda', | |
sources=['csrc/layer_norm_cuda.cpp', | |
'csrc/layer_norm_cuda_kernel.cu'], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-maxrregcount=50', | |
'-O3', | |
'--use_fast_math'] + version_dependent_macros})) | |
ext_modules.append( | |
CUDAExtension(name='mlp_cuda', | |
sources=['csrc/mlp.cpp', | |
'csrc/mlp_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-O3'] + version_dependent_macros})) | |
if "--bnp" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--bnp") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--bnp was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='bnp', | |
sources=['apex/contrib/csrc/groupbn/batch_norm.cu', | |
'apex/contrib/csrc/groupbn/ipc.cu', | |
'apex/contrib/csrc/groupbn/interface.cpp', | |
'apex/contrib/csrc/groupbn/batch_norm_add_relu.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': [] + version_dependent_macros, | |
'nvcc':['-DCUDA_HAS_FP16=1', | |
'-D__CUDA_NO_HALF_OPERATORS__', | |
'-D__CUDA_NO_HALF_CONVERSIONS__', | |
'-D__CUDA_NO_HALF2_OPERATORS__'] + version_dependent_macros})) | |
if "--xentropy" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--xentropy") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--xentropy was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='xentropy_cuda', | |
sources=['apex/contrib/csrc/xentropy/interface.cpp', | |
'apex/contrib/csrc/xentropy/xentropy_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-O3'] + version_dependent_macros})) | |
if "--deprecated_fused_adam" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--deprecated_fused_adam") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--deprecated_fused_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='fused_adam_cuda', | |
sources=['apex/contrib/csrc/optimizers/fused_adam_cuda.cpp', | |
'apex/contrib/csrc/optimizers/fused_adam_cuda_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, | |
'nvcc':['-O3', | |
'--use_fast_math'] + version_dependent_macros})) | |
if "--deprecated_fused_lamb" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--deprecated_fused_lamb") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--deprecated_fused_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='fused_lamb_cuda', | |
sources=['apex/contrib/csrc/optimizers/fused_lamb_cuda.cpp', | |
'apex/contrib/csrc/optimizers/fused_lamb_cuda_kernel.cu', | |
'csrc/multi_tensor_l2norm_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, | |
'nvcc':['-O3', | |
'--use_fast_math'] + version_dependent_macros})) | |
# Check, if ATen/CUDAGenerator.h is found, otherwise use the new ATen/CUDAGeneratorImpl.h, due to breaking change in https://github.com/pytorch/pytorch/pull/36026 | |
generator_flag = [] | |
torch_dir = torch.__path__[0] | |
if os.path.exists(os.path.join(torch_dir, 'include', 'ATen', 'CUDAGenerator.h')): | |
generator_flag = ['-DOLD_GENERATOR'] | |
if "--fast_layer_norm" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--fast_layer_norm") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--fast_layer_norm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
# Check, if CUDA11 is installed for compute capability 8.0 | |
cc_flag = [] | |
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME) | |
if int(bare_metal_major) >= 11: | |
cc_flag.append('-gencode') | |
cc_flag.append('arch=compute_80,code=sm_80') | |
ext_modules.append( | |
CUDAExtension(name='fast_layer_norm', | |
sources=['apex/contrib/csrc/layer_norm/ln_api.cpp', | |
'apex/contrib/csrc/layer_norm/ln_fwd_cuda_kernel.cu', | |
'apex/contrib/csrc/layer_norm/ln_bwd_semi_cuda_kernel.cu', | |
], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'-I./apex/contrib/csrc/layer_norm/', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
if "--fmha" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--fmha") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--fmha was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
# Check, if CUDA11 is installed for compute capability 8.0 | |
cc_flag = [] | |
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME) | |
if int(bare_metal_major) < 11: | |
raise RuntimeError("--fmha only supported on SM80") | |
ext_modules.append( | |
CUDAExtension(name='fmhalib', | |
sources=[ | |
'apex/contrib/csrc/fmha/fmha_api.cpp', | |
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_128_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_256_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_384_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_512_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_128_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_256_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_384_64_kernel.sm80.cu', | |
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_512_64_kernel.sm80.cu', | |
], | |
extra_compile_args={'cxx': ['-O3', | |
'-I./apex/contrib/csrc/fmha/src', | |
] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_80,code=sm_80', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'-I./apex/contrib/csrc/', | |
'-I./apex/contrib/csrc/fmha/src', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
if "--fast_multihead_attn" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--fast_multihead_attn") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--fast_multihead_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
# Check, if CUDA11 is installed for compute capability 8.0 | |
cc_flag = [] | |
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME) | |
if int(bare_metal_major) >= 11: | |
cc_flag.append('-gencode') | |
cc_flag.append('arch=compute_80,code=sm_80') | |
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/multihead_attn/cutlass"]) | |
ext_modules.append( | |
CUDAExtension(name='fast_additive_mask_softmax_dropout', | |
sources=['apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout.cpp', | |
'apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_mask_softmax_dropout', | |
sources=['apex/contrib/csrc/multihead_attn/masked_softmax_dropout.cpp', | |
'apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_self_multihead_attn_bias_additive_mask', | |
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask.cpp', | |
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_self_multihead_attn_bias', | |
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias.cpp', | |
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_self_multihead_attn', | |
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn.cpp', | |
'apex/contrib/csrc/multihead_attn/self_multihead_attn_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_self_multihead_attn_norm_add', | |
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add.cpp', | |
'apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_encdec_multihead_attn', | |
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn.cpp', | |
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
ext_modules.append( | |
CUDAExtension(name='fast_encdec_multihead_attn_norm_add', | |
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add.cpp', | |
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cuda.cu'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, | |
'nvcc':['-O3', | |
'-gencode', 'arch=compute_70,code=sm_70', | |
'-I./apex/contrib/csrc/multihead_attn/cutlass/', | |
'-U__CUDA_NO_HALF_OPERATORS__', | |
'-U__CUDA_NO_HALF_CONVERSIONS__', | |
'--expt-relaxed-constexpr', | |
'--expt-extended-lambda', | |
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) | |
if "--transducer" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--transducer") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--transducer was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
ext_modules.append( | |
CUDAExtension(name='transducer_joint_cuda', | |
sources=['apex/contrib/csrc/transducer/transducer_joint.cpp', | |
'apex/contrib/csrc/transducer/transducer_joint_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-O3'] + version_dependent_macros})) | |
ext_modules.append( | |
CUDAExtension(name='transducer_loss_cuda', | |
sources=['apex/contrib/csrc/transducer/transducer_loss.cpp', | |
'apex/contrib/csrc/transducer/transducer_loss_kernel.cu'], | |
include_dirs=[os.path.join(this_dir, 'csrc')], | |
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, | |
'nvcc':['-O3'] + version_dependent_macros})) | |
if "--fast_bottleneck" in sys.argv: | |
from torch.utils.cpp_extension import CUDAExtension | |
sys.argv.remove("--fast_bottleneck") | |
from torch.utils.cpp_extension import BuildExtension | |
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) | |
if torch.utils.cpp_extension.CUDA_HOME is None: | |
raise RuntimeError("--fast_bottleneck was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") | |
else: | |
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/cudnn-frontend/"]) | |
ext_modules.append( | |
CUDAExtension(name='fast_bottleneck', | |
sources=['apex/contrib/csrc/bottleneck/bottleneck.cpp'], | |
include_dirs=['apex/contrib/csrc/cudnn-frontend/include'], | |
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag})) | |
setup( | |
name='apex', | |
version='0.1', | |
packages=find_packages(exclude=('build', | |
'csrc', | |
'include', | |
'tests', | |
'dist', | |
'docs', | |
'tests', | |
'examples', | |
'apex.egg-info',)), | |
description='PyTorch Extensions written by NVIDIA', | |
ext_modules=ext_modules, | |
cmdclass=cmdclass, | |
extras_require=extras, | |
) | |