Spaces:
Build error
Build error
import sys | |
import argparse | |
import cv2 | |
import torch | |
import time | |
import os | |
from utils.inference.image_processing import crop_face, get_final_image | |
from utils.inference.video_processing import read_video, get_target, get_final_video, add_audio_from_another_video, face_enhancement | |
from utils.inference.core import model_inference | |
from network.AEI_Net import AEI_Net | |
from coordinate_reg.image_infer import Handler | |
from insightface_func.face_detect_crop_multi import Face_detect_crop | |
from arcface_model.iresnet import iresnet100 | |
from models.pix2pix_model import Pix2PixModel | |
from models.config_sr import TestOptions | |
import subprocess | |
subprocess.run(["./download_models.sh"]) | |
def init_models(args): | |
# model for face cropping | |
app = Face_detect_crop(name='antelope', root='./insightface_func/models') | |
app.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640)) | |
# main model for generation | |
G = AEI_Net(args.backbone, num_blocks=args.num_blocks, c_id=512) | |
G.eval() | |
G.load_state_dict(torch.load(args.G_path, map_location=torch.device('cpu'))) | |
G = G.cuda() | |
G = G.half() | |
# arcface model to get face embedding | |
netArc = iresnet100(fp16=False) | |
netArc.load_state_dict(torch.load('arcface_model/backbone.pth')) | |
netArc=netArc.cuda() | |
netArc.eval() | |
# model to get face landmarks | |
handler = Handler('./coordinate_reg/model/2d106det', 0, ctx_id=0, det_size=640) | |
# model to make superres of face, set use_sr=True if you want to use super resolution or use_sr=False if you don't | |
if args.use_sr: | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
torch.backends.cudnn.benchmark = True | |
opt = TestOptions() | |
#opt.which_epoch ='10_7' | |
model = Pix2PixModel(opt) | |
model.netG.train() | |
else: | |
model = None | |
return app, G, netArc, handler, model | |
def infer_faceswap(src, tgt): | |
app, G, netArc, handler, model = init_models(args) | |
# get crops from source images | |
print('List of source paths: ',args.source_paths) | |
source = [] | |
img = cv2.imread(src) | |
img = crop_face(img, app, args.crop_size)[0] | |
source.append(img[:, :, ::-1]) | |
target = [] | |
img = cv2.imread(tgt) | |
img = crop_face(img, app, args.crop_size)[0] | |
target.append(img) | |
start = time.time() | |
final_frames_list, crop_frames_list, full_frames, tfm_array_list = model_inference(full_frames, | |
source, | |
target, | |
netArc, | |
G, | |
app, | |
True, | |
similarity_th=args.similarity_th, | |
crop_size=args.crop_size, | |
BS=args.batch_size) | |
result = get_final_image(final_frames_list, crop_frames_list, full_frames[0], tfm_array_list, handler) | |
cv2.imwrite(args.out_image_name, result) | |
print(f'Swapped Image saved with path {args.out_image_name}') | |
print('Total time: ', time.time()-start) | |
return result | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# Generator params | |
parser.add_argument('--G_path', default='weights/G_unet_2blocks.pth', type=str, help='Path to weights for G') | |
parser.add_argument('--backbone', default='unet', const='unet', nargs='?', choices=['unet', 'linknet', 'resnet'], help='Backbone for attribute encoder') | |
parser.add_argument('--num_blocks', default=2, type=int, help='Numbers of AddBlocks at AddResblock') | |
parser.add_argument('--batch_size', default=40, type=int) | |
parser.add_argument('--crop_size', default=224, type=int, help="Don't change this") | |
parser.add_argument('--use_sr', default=False, type=bool, help='True for super resolution on swap images') | |
parser.add_argument('--similarity_th', default=0.15, type=float, help='Threshold for selecting a face similar to the target') | |
parser.add_argument('--source_paths', default=['examples/images/mark.jpg', 'examples/images/elon_musk.jpg'], nargs='+') | |
parser.add_argument('--target_faces_paths', default=[], nargs='+', help="It's necessary to set the face/faces in the video to which the source face/faces is swapped. You can skip this parametr, and then any face is selected in the target video for swap.") | |
# parameters for image to video | |
parser.add_argument('--target_video', default='examples/videos/nggyup.mp4', type=str, help="It's necessary for image to video swap") | |
parser.add_argument('--out_video_name', default='examples/results/result.mp4', type=str, help="It's necessary for image to video swap") | |
# parameters for image to image | |
parser.add_argument('--image_to_image', default=True, type=bool, help='True for image to image swap, False for swap on video') | |
parser.add_argument('--target_image', default='examples/images/beckham.jpg', type=str, help="It's necessary for image to image swap") | |
parser.add_argument('--out_image_name', default='examples/results/result.png', type=str,help="It's necessary for image to image swap") | |
args = parser.parse_args() | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
input_source = gr.Image( | |
type="pil", | |
label="Input Source" | |
) | |
input_target = gr.Image( | |
type="pil", | |
label="Input Target" | |
) | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
result = gr.Image(type='pil', label='Image Output') | |
run_button.click( | |
fn=infer_faceswap, | |
inputs=[input_source, input_target], | |
outputs=[result] | |
) | |
demo.launch() |