#include void multi_tensor_scale_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, float scale); void multi_tensor_sgd_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, float wd, float momentum, float dampening, float lr, bool nesterov, bool first_run, bool wd_after_momentum, float scale); void multi_tensor_axpby_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, float a, float b, int arg_to_check); std::tuple multi_tensor_l2norm_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::optional per_tensor_python); void multi_tensor_lamb_stage1_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor per_tensor_decay, const int step, const float beta1, const float beta2, const float epsilon, at::Tensor global_grad_norm, const float max_global_grad_norm); void multi_tensor_lamb_stage2_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor per_tensor_param_norm, at::Tensor per_tensor_update_norm, const float lr, const float weight_decay, at::optional use_nvlamb_python); void multi_tensor_adam_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int mode, const int bias_correction, const float weight_decay); void multi_tensor_adagrad_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, const float lr, const float epsilon, const int mode, const float weight_decay); void multi_tensor_novograd_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, at::Tensor grad_norms, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int bias_correction, const float weight_decay, const int grad_averaging, const int mode, const int norm_type); void multi_tensor_lamb_cuda( int chunk_size, at::Tensor noop_flag, std::vector> tensor_lists, const float lr, const float beta1, const float beta2, const float epsilon, const int step, const int bias_correction, const float weight_decay, const int grad_averaging, const int mode, at::Tensor global_grad_norm, const float max_grad_norm, at::optional use_nvlamb_python); PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("multi_tensor_scale", &multi_tensor_scale_cuda, "Fused overflow check + scale for a list of contiguous tensors"); m.def("multi_tensor_sgd", &multi_tensor_sgd_cuda, "Fused SGD optimizer for list of contiguous tensors"); m.def("multi_tensor_axpby", &multi_tensor_axpby_cuda, "out = a*x + b*y for a list of contiguous tensors"); m.def("multi_tensor_l2norm", &multi_tensor_l2norm_cuda, "Computes L2 norm for a list of contiguous tensors"); m.def("multi_tensor_lamb_stage1_cuda", &multi_tensor_lamb_stage1_cuda, "Computes update part of LAMB optimizer"); m.def("multi_tensor_lamb_stage2_cuda", &multi_tensor_lamb_stage2_cuda, "Completes application of gradient to parameters for LAMB optimizer"); m.def("multi_tensor_adam", &multi_tensor_adam_cuda, "Compute and apply gradient update to parameters for Adam optimizer"); m.def("multi_tensor_adagrad", &multi_tensor_adagrad_cuda, "Compute and apply gradient update to parameters for Adam optimizer"); m.def("multi_tensor_novograd", &multi_tensor_novograd_cuda, "Compute and apply gradient update to parameters for Adam optimizer"); m.def("multi_tensor_lamb", &multi_tensor_lamb_cuda, "Computes and apply update for LAMB optimizer"); }