Spaces:
Paused
Paused
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from torch.nn import Parameter | |
| from .config import device, num_classes | |
| def create_model(opt): | |
| if opt.model == 'pix2pixHD': | |
| #from .pix2pixHD_model import Pix2PixHDModel, InferenceModel | |
| from .fs_model import fsModel | |
| model = fsModel() | |
| else: | |
| from .ui_model import UIModel | |
| model = UIModel() | |
| model.initialize(opt) | |
| if opt.verbose: | |
| print("model [%s] was created" % (model.name())) | |
| if opt.isTrain and len(opt.gpu_ids) and not opt.fp16: | |
| model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) | |
| return model | |
| class SEBlock(nn.Module): | |
| def __init__(self, channel, reduction=16): | |
| super(SEBlock, self).__init__() | |
| self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, channel // reduction), | |
| nn.PReLU(), | |
| nn.Linear(channel // reduction, channel), | |
| nn.Sigmoid() | |
| ) | |
| def forward(self, x): | |
| b, c, _, _ = x.size() | |
| y = self.avg_pool(x).view(b, c) | |
| y = self.fc(y).view(b, c, 1, 1) | |
| return x * y | |
| class IRBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): | |
| super(IRBlock, self).__init__() | |
| self.bn0 = nn.BatchNorm2d(inplanes) | |
| self.conv1 = conv3x3(inplanes, inplanes) | |
| self.bn1 = nn.BatchNorm2d(inplanes) | |
| self.prelu = nn.PReLU() | |
| self.conv2 = conv3x3(inplanes, planes, stride) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.use_se = use_se | |
| if self.use_se: | |
| self.se = SEBlock(planes) | |
| def forward(self, x): | |
| residual = x | |
| out = self.bn0(x) | |
| out = self.conv1(out) | |
| out = self.bn1(out) | |
| out = self.prelu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.use_se: | |
| out = self.se(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.prelu(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def __init__(self, block, layers, use_se=True): | |
| self.inplanes = 64 | |
| self.use_se = use_se | |
| super(ResNet, self).__init__() | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.prelu = nn.PReLU() | |
| self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
| self.bn2 = nn.BatchNorm2d(512) | |
| self.dropout = nn.Dropout() | |
| self.fc = nn.Linear(512 * 7 * 7, 512) | |
| self.bn3 = nn.BatchNorm1d(512) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.xavier_normal_(m.weight) | |
| elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.xavier_normal_(m.weight) | |
| nn.init.constant_(m.bias, 0) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes * block.expansion, | |
| kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se)) | |
| self.inplanes = planes | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes, use_se=self.use_se)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.prelu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.bn2(x) | |
| x = self.dropout(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.fc(x) | |
| x = self.bn3(x) | |
| return x | |
| class ArcMarginModel(nn.Module): | |
| def __init__(self, args): | |
| super(ArcMarginModel, self).__init__() | |
| self.weight = Parameter(torch.FloatTensor(num_classes, args.emb_size)) | |
| nn.init.xavier_uniform_(self.weight) | |
| self.easy_margin = args.easy_margin | |
| self.m = args.margin_m | |
| self.s = args.margin_s | |
| self.cos_m = math.cos(self.m) | |
| self.sin_m = math.sin(self.m) | |
| self.th = math.cos(math.pi - self.m) | |
| self.mm = math.sin(math.pi - self.m) * self.m | |
| def forward(self, input, label): | |
| x = F.normalize(input) | |
| W = F.normalize(self.weight) | |
| cosine = F.linear(x, W) | |
| sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) | |
| phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m) | |
| if self.easy_margin: | |
| phi = torch.where(cosine > 0, phi, cosine) | |
| else: | |
| phi = torch.where(cosine > self.th, phi, cosine - self.mm) | |
| one_hot = torch.zeros(cosine.size(), device=device) | |
| one_hot.scatter_(1, label.view(-1, 1).long(), 1) | |
| output = (one_hot * phi) + ((1.0 - one_hot) * cosine) | |
| output *= self.s | |
| return output | |