Spaces:
Running
Running
import cv2 | |
import numpy as np | |
import os | |
import mxnet as mx | |
from skimage import transform as trans | |
import insightface | |
import sys | |
# sys.path.append('/home/jovyan/FaceShifter-2/FaceShifter3/') | |
from insightface_func.face_detect_crop_single import Face_detect_crop | |
import kornia | |
M = np.array([[ 0.57142857, 0., 32.],[ 0.,0.57142857, 32.]]) | |
IM = np.array([[[1.75, -0., -56.],[ -0., 1.75, -56.]]]) | |
def square_crop(im, S): | |
if im.shape[0] > im.shape[1]: | |
height = S | |
width = int(float(im.shape[1]) / im.shape[0] * S) | |
scale = float(S) / im.shape[0] | |
else: | |
width = S | |
height = int(float(im.shape[0]) / im.shape[1] * S) | |
scale = float(S) / im.shape[1] | |
resized_im = cv2.resize(im, (width, height)) | |
det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im | |
return det_im, scale | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
t1 = trans.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = trans.SimilarityTransform(rotation=rot) | |
t4 = trans.SimilarityTransform(translation=(output_size / 2, | |
output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, | |
M, (output_size, output_size), | |
borderValue=0.0) | |
return cropped, M | |
def trans_points2d_batch(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for j in range(pts.shape[0]): | |
for i in range(pts.shape[1]): | |
pt = pts[j][i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M[j], new_pt) | |
new_pts[j][i] = new_pt[0:2] | |
return new_pts | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
#print('new_pt', new_pt.shape, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def trans_points3d(pts, M): | |
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
#print(scale) | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
#print('new_pt', new_pt.shape, new_pt) | |
new_pts[i][0:2] = new_pt[0:2] | |
new_pts[i][2] = pts[i][2] * scale | |
return new_pts | |
def trans_points(pts, M): | |
if pts.shape[1] == 2: | |
return trans_points2d(pts, M) | |
else: | |
return trans_points3d(pts, M) | |
class Handler: | |
def __init__(self, prefix, epoch, im_size=192, det_size=224, ctx_id=0, root='./insightface_func/models'): | |
print('loading', prefix, epoch) | |
if ctx_id >= 0: | |
ctx = mx.gpu(ctx_id) | |
else: | |
ctx = mx.cpu() | |
image_size = (im_size, im_size) | |
# self.detector = insightface.model_zoo.get_model( | |
# 'retinaface_mnet025_v2') #can replace with your own face detector | |
self.detector = Face_detect_crop(name='antelope', root=root) | |
self.detector.prepare(ctx_id=ctx_id, det_thresh=0.6, det_size=(640,640)) | |
#self.detector = insightface.model_zoo.get_model('retinaface_r50_v1') | |
#self.detector.prepare(ctx_id=ctx_id) | |
self.det_size = det_size | |
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) | |
all_layers = sym.get_internals() | |
sym = all_layers['fc1_output'] | |
self.image_size = image_size | |
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) | |
model.bind(for_training=False, | |
data_shapes=[('data', (1, 3, image_size[0], image_size[1])) | |
]) | |
model.set_params(arg_params, aux_params) | |
self.model = model | |
self.image_size = image_size | |
def get_without_detection_batch(self, img, M, IM): | |
rimg = kornia.warp_affine(img, M.repeat(img.shape[0],1,1), (192, 192), padding_mode='zeros') | |
rimg = kornia.bgr_to_rgb(rimg) | |
data = mx.nd.array(rimg) | |
db = mx.io.DataBatch(data=(data, )) | |
self.model.forward(db, is_train=False) | |
pred = self.model.get_outputs()[-1].asnumpy() | |
pred = pred.reshape((pred.shape[0], -1, 2)) | |
pred[:, :, 0:2] += 1 | |
pred[:, :, 0:2] *= (self.image_size[0] // 2) | |
pred = trans_points2d_batch(pred, IM.repeat(img.shape[0],1,1).numpy()) | |
return pred | |
def get_without_detection_without_transform(self, img): | |
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | |
rimg = cv2.warpAffine(img, M, self.image_size, borderValue=0.0) | |
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | |
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | |
input_blob[0] = rimg | |
data = mx.nd.array(input_blob) | |
db = mx.io.DataBatch(data=(data, )) | |
self.model.forward(db, is_train=False) | |
pred = self.model.get_outputs()[-1].asnumpy()[0] | |
pred = pred.reshape((-1, 2)) | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (self.image_size[0] // 2) | |
pred = trans_points2d(pred, IM) | |
return pred | |
def get_without_detection(self, img): | |
bbox = [0, 0, img.shape[0], img.shape[1]] | |
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | |
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
rotate = 0 | |
_scale = self.image_size[0] * 2 / 3.0 / max(w, h) | |
rimg, M = transform(img, center, self.image_size[0], _scale, | |
rotate) | |
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | |
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | |
input_blob[0] = rimg | |
data = mx.nd.array(input_blob) | |
db = mx.io.DataBatch(data=(data, )) | |
self.model.forward(db, is_train=False) | |
pred = self.model.get_outputs()[-1].asnumpy()[0] | |
if pred.shape[0] >= 3000: | |
pred = pred.reshape((-1, 3)) | |
else: | |
pred = pred.reshape((-1, 2)) | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (self.image_size[0] // 2) | |
if pred.shape[1] == 3: | |
pred[:, 2] *= (self.image_size[0] // 2) | |
IM = cv2.invertAffineTransform(M) | |
pred = trans_points(pred, IM) | |
return pred | |
def get(self, img, get_all=False): | |
out = [] | |
det_im, det_scale = square_crop(img, self.det_size) | |
bboxes, _ = self.detector.detect(det_im) | |
if bboxes.shape[0] == 0: | |
return out | |
bboxes /= det_scale | |
if not get_all: | |
areas = [] | |
for i in range(bboxes.shape[0]): | |
x = bboxes[i] | |
area = (x[2] - x[0]) * (x[3] - x[1]) | |
areas.append(area) | |
m = np.argsort(areas)[-1] | |
bboxes = bboxes[m:m + 1] | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i] | |
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | |
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
rotate = 0 | |
_scale = self.image_size[0] * 2 / 3.0 / max(w, h) | |
rimg, M = transform(img, center, self.image_size[0], _scale, | |
rotate) | |
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | |
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | |
input_blob[0] = rimg | |
data = mx.nd.array(input_blob) | |
db = mx.io.DataBatch(data=(data, )) | |
self.model.forward(db, is_train=False) | |
pred = self.model.get_outputs()[-1].asnumpy()[0] | |
if pred.shape[0] >= 3000: | |
pred = pred.reshape((-1, 3)) | |
else: | |
pred = pred.reshape((-1, 2)) | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (self.image_size[0] // 2) | |
if pred.shape[1] == 3: | |
pred[:, 2] *= (self.image_size[0] // 2) | |
IM = cv2.invertAffineTransform(M) | |
pred = trans_points(pred, IM) | |
out.append(pred) | |
return out | |