Upload folder using huggingface_hub
Browse files- app/content.py +1 -1
- app/draw_diagram.py +120 -150
- app/pages.py +45 -107
- app/show_examples.py +23 -58
app/content.py
CHANGED
|
@@ -62,7 +62,7 @@ cnasr_datasets = {
|
|
| 62 |
}
|
| 63 |
|
| 64 |
metrics = {
|
| 65 |
-
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower the better)',
|
| 66 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
| 67 |
'llama3_70b_judge': 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
|
| 68 |
'meteor': 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
|
|
|
|
| 62 |
}
|
| 63 |
|
| 64 |
metrics = {
|
| 65 |
+
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
| 66 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
| 67 |
'llama3_70b_judge': 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
|
| 68 |
'meteor': 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
|
app/draw_diagram.py
CHANGED
|
@@ -7,12 +7,20 @@ from streamlit.components.v1 import html
|
|
| 7 |
from app.show_examples import *
|
| 8 |
import pandas as pd
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
# huggingface_image = Image.open('style/huggingface.jpg')
|
| 11 |
|
| 12 |
# other info
|
| 13 |
-
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
|
| 14 |
-
path = "./additional_info/Leaderboard-Rename.xlsx"
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# def nav_to(value):
|
| 18 |
# try:
|
|
@@ -26,11 +34,6 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 26 |
|
| 27 |
folder = f"./results/{metrics}/"
|
| 28 |
|
| 29 |
-
display_names = {
|
| 30 |
-
'SU': 'Speech Understanding',
|
| 31 |
-
'ASU': 'Audio Scene Understanding',
|
| 32 |
-
'VU': 'Voice Understanding'
|
| 33 |
-
}
|
| 34 |
|
| 35 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
| 36 |
chart_data = pd.read_csv(data_path).round(3)
|
|
@@ -50,8 +53,9 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 50 |
""", unsafe_allow_html=True)
|
| 51 |
|
| 52 |
# remap model names
|
| 53 |
-
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['
|
| 54 |
-
chart_data['model_show'] = chart_data['Model'].map(display_model_names)
|
|
|
|
| 55 |
|
| 56 |
models = st.multiselect("Please choose the model",
|
| 57 |
sorted(chart_data['model_show'].tolist()),
|
|
@@ -61,86 +65,17 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 61 |
chart_data = chart_data[chart_data['model_show'].isin(models)]
|
| 62 |
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)
|
| 63 |
|
| 64 |
-
if len(chart_data) == 0:
|
| 65 |
-
return
|
| 66 |
|
| 67 |
-
# Get Values
|
| 68 |
-
data_values = chart_data.iloc[:, 1]
|
| 69 |
-
|
| 70 |
-
# Calculate Q1 and Q3
|
| 71 |
-
q1 = data_values.quantile(0.25)
|
| 72 |
-
q3 = data_values.quantile(0.75)
|
| 73 |
-
|
| 74 |
-
# Calculate IQR
|
| 75 |
-
iqr = q3 - q1
|
| 76 |
-
|
| 77 |
-
# Define lower and upper bounds (1.5*IQR is a common threshold)
|
| 78 |
-
lower_bound = q1 - 1.5 * iqr
|
| 79 |
-
upper_bound = q3 + 1.5 * iqr
|
| 80 |
-
|
| 81 |
-
# Filter data within the bounds
|
| 82 |
-
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
|
| 83 |
-
|
| 84 |
-
# Calculate min and max values after outlier handling
|
| 85 |
-
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
|
| 86 |
-
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
|
| 87 |
-
|
| 88 |
-
options = {
|
| 89 |
-
#"title": {"text": f"{display_names[folder_name.upper()]}"},
|
| 90 |
-
"title": {"text": f"{dataset_name}"},
|
| 91 |
-
"tooltip": {
|
| 92 |
-
"trigger": "axis",
|
| 93 |
-
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 94 |
-
"triggerOn": 'mousemove',
|
| 95 |
-
},
|
| 96 |
-
"legend": {"data": ['Overall Accuracy']},
|
| 97 |
-
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 98 |
-
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 99 |
-
"xAxis": [
|
| 100 |
-
{
|
| 101 |
-
"type": "category",
|
| 102 |
-
"boundaryGap": True,
|
| 103 |
-
"triggerEvent": True,
|
| 104 |
-
"data": chart_data['model_show'].tolist(),
|
| 105 |
-
}
|
| 106 |
-
],
|
| 107 |
-
"yAxis": [{"type": "value",
|
| 108 |
-
"min": min_value,
|
| 109 |
-
"max": max_value,
|
| 110 |
-
"boundaryGap": True
|
| 111 |
-
# "splitNumber": 10
|
| 112 |
-
}],
|
| 113 |
-
"series": [{
|
| 114 |
-
"name": f"{dataset_name}",
|
| 115 |
-
"type": "bar",
|
| 116 |
-
"data": chart_data[f'{new_dataset_name}'].tolist(),
|
| 117 |
-
}],
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
events = {
|
| 121 |
-
"click": "function(params) { return params.value }"
|
| 122 |
-
}
|
| 123 |
|
| 124 |
-
value = st_echarts(options=options, events=events, height="500px")
|
| 125 |
-
|
| 126 |
-
# if value != None:
|
| 127 |
-
# # print(value)
|
| 128 |
-
# nav_to(value)
|
| 129 |
-
|
| 130 |
-
# if value != None:
|
| 131 |
-
# highlight_table_line(value)
|
| 132 |
|
|
|
|
| 133 |
'''
|
| 134 |
-
Show
|
| 135 |
'''
|
| 136 |
-
# st.divider()
|
| 137 |
with st.container():
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# custom_css = """
|
| 141 |
-
|
| 142 |
-
# """
|
| 143 |
-
# st.markdown(custom_css, unsafe_allow_html=True)
|
| 144 |
|
| 145 |
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
|
| 146 |
|
|
@@ -148,6 +83,9 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 148 |
|
| 149 |
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
|
| 150 |
|
|
|
|
|
|
|
|
|
|
| 151 |
cur_dataset_name = chart_data_table.columns[1]
|
| 152 |
|
| 153 |
if cur_dataset_name in [
|
|
@@ -162,7 +100,6 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 162 |
'tedlium3_long_form_test',
|
| 163 |
'imda_part1_asr_test',
|
| 164 |
'imda_part2_asr_test',
|
| 165 |
-
|
| 166 |
'aishell_asr_zh_test',
|
| 167 |
]:
|
| 168 |
|
|
@@ -187,10 +124,6 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 187 |
chart_data_table.columns[1]: {'alignment': 'left'},
|
| 188 |
"model_link": st.column_config.LinkColumn(
|
| 189 |
"Model Link",
|
| 190 |
-
# # # help="",
|
| 191 |
-
# validate=r"^https://(.*?)$",
|
| 192 |
-
# # max_chars=100,
|
| 193 |
-
# display_text=r"\[(.*?)\]"
|
| 194 |
),
|
| 195 |
},
|
| 196 |
hide_index=True,
|
|
@@ -198,68 +131,105 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
| 198 |
)
|
| 199 |
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
# s = ''
|
| 205 |
-
# for model in models:
|
| 206 |
-
# try:
|
| 207 |
-
# # <td align="center"><input type="checkbox" name="select"></td>
|
| 208 |
-
# s += f"""<tr>
|
| 209 |
-
# <td><a href={model_link[model]}>{model}</a></td>
|
| 210 |
-
# <td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td>
|
| 211 |
-
# </tr>"""
|
| 212 |
-
# except:
|
| 213 |
-
# # print(f"{model} is not in {dataset_name}")
|
| 214 |
-
# continue
|
| 215 |
-
|
| 216 |
-
# # select all function
|
| 217 |
-
# select_all_function = """<script>
|
| 218 |
-
# function toggle(source) {
|
| 219 |
-
# var checkboxes = document.querySelectorAll('input[type="checkbox"]');
|
| 220 |
-
# for (var i = 0; i < checkboxes.length; i++) {
|
| 221 |
-
# if (checkboxes[i] != source)
|
| 222 |
-
# checkboxes[i].checked = source.checked;
|
| 223 |
-
# }
|
| 224 |
-
# }
|
| 225 |
-
# </script>"""
|
| 226 |
-
# st.markdown(f"""
|
| 227 |
-
# <div class="select_all">{select_all_function}</div>
|
| 228 |
-
# """, unsafe_allow_html=True)
|
| 229 |
-
|
| 230 |
-
# info_body_details = f"""
|
| 231 |
-
# <table style="width:80%">
|
| 232 |
-
# <thead>
|
| 233 |
-
# <tr style="text-align: center;">
|
| 234 |
-
# <th style="width:45%">MODEL</th>
|
| 235 |
-
# <th style="width:45%">{dataset_name}</th>
|
| 236 |
-
# </tr>
|
| 237 |
-
# {s}
|
| 238 |
-
# </thead>
|
| 239 |
-
# </table>
|
| 240 |
-
# """
|
| 241 |
-
# #<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th>
|
| 242 |
-
# # html_code = custom_css + select_all_function + info_body_details
|
| 243 |
-
# # html(html_code, height = 300)
|
| 244 |
-
|
| 245 |
-
# st.markdown(f"""
|
| 246 |
-
# <div class="my-data-table">{info_body_details}</div>
|
| 247 |
-
# """, unsafe_allow_html=True)
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
# st.dataframe(chart_data,
|
| 251 |
-
# # column_config = {
|
| 252 |
-
# # "Link": st.column_config.LinkColumn(
|
| 253 |
-
# # display_text= st.image(huggingface_image)
|
| 254 |
-
# # ),
|
| 255 |
-
# # },
|
| 256 |
-
# hide_index = True,
|
| 257 |
-
# use_container_width=True)
|
| 258 |
'''
|
| 259 |
-
|
| 260 |
'''
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from app.show_examples import *
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
+
from model_information import get_dataframe
|
| 11 |
+
|
| 12 |
+
|
| 13 |
# huggingface_image = Image.open('style/huggingface.jpg')
|
| 14 |
|
| 15 |
# other info
|
| 16 |
+
# path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
|
| 17 |
+
# path = "./additional_info/Leaderboard-Rename.xlsx"
|
| 18 |
+
|
| 19 |
+
# info_df = pd.read_excel(path)
|
| 20 |
+
|
| 21 |
+
info_df = get_dataframe()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
|
| 25 |
# def nav_to(value):
|
| 26 |
# try:
|
|
|
|
| 34 |
|
| 35 |
folder = f"./results/{metrics}/"
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
| 39 |
chart_data = pd.read_csv(data_path).round(3)
|
|
|
|
| 53 |
""", unsafe_allow_html=True)
|
| 54 |
|
| 55 |
# remap model names
|
| 56 |
+
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 57 |
+
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
|
| 58 |
+
|
| 59 |
|
| 60 |
models = st.multiselect("Please choose the model",
|
| 61 |
sorted(chart_data['model_show'].tolist()),
|
|
|
|
| 65 |
chart_data = chart_data[chart_data['model_show'].isin(models)]
|
| 66 |
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)
|
| 67 |
|
| 68 |
+
if len(chart_data) == 0: return
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 73 |
'''
|
| 74 |
+
Show Table
|
| 75 |
'''
|
|
|
|
| 76 |
with st.container():
|
| 77 |
+
st.markdown('##### TABLE')
|
| 78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
|
| 81 |
|
|
|
|
| 83 |
|
| 84 |
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
|
| 85 |
|
| 86 |
+
# Format numeric columns to 2 decimal places
|
| 87 |
+
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: f"{x:.3f}" if isinstance(x, (int, float)) else x)
|
| 88 |
+
|
| 89 |
cur_dataset_name = chart_data_table.columns[1]
|
| 90 |
|
| 91 |
if cur_dataset_name in [
|
|
|
|
| 100 |
'tedlium3_long_form_test',
|
| 101 |
'imda_part1_asr_test',
|
| 102 |
'imda_part2_asr_test',
|
|
|
|
| 103 |
'aishell_asr_zh_test',
|
| 104 |
]:
|
| 105 |
|
|
|
|
| 124 |
chart_data_table.columns[1]: {'alignment': 'left'},
|
| 125 |
"model_link": st.column_config.LinkColumn(
|
| 126 |
"Model Link",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
),
|
| 128 |
},
|
| 129 |
hide_index=True,
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
|
| 134 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 135 |
+
'''
|
| 136 |
+
Show Chart
|
| 137 |
+
'''
|
| 138 |
|
| 139 |
+
# Initialize a session state variable for toggling the chart visibility
|
| 140 |
+
if "show_chart" not in st.session_state:
|
| 141 |
+
st.session_state.show_chart = False
|
| 142 |
+
|
| 143 |
+
# Create a button to toggle visibility
|
| 144 |
+
if st.button("Show Chart"):
|
| 145 |
+
st.session_state.show_chart = not st.session_state.show_chart
|
| 146 |
+
|
| 147 |
+
if st.session_state.show_chart:
|
| 148 |
+
|
| 149 |
+
with st.container():
|
| 150 |
+
st.markdown('##### CHART')
|
| 151 |
+
|
| 152 |
+
# Get Values
|
| 153 |
+
data_values = chart_data.iloc[:, 1]
|
| 154 |
+
|
| 155 |
+
# Calculate Q1 and Q3
|
| 156 |
+
q1 = data_values.quantile(0.25)
|
| 157 |
+
q3 = data_values.quantile(0.75)
|
| 158 |
+
|
| 159 |
+
# Calculate IQR
|
| 160 |
+
iqr = q3 - q1
|
| 161 |
+
|
| 162 |
+
# Define lower and upper bounds (1.5*IQR is a common threshold)
|
| 163 |
+
lower_bound = q1 - 1.5 * iqr
|
| 164 |
+
upper_bound = q3 + 1.5 * iqr
|
| 165 |
+
|
| 166 |
+
# Filter data within the bounds
|
| 167 |
+
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
|
| 168 |
+
|
| 169 |
+
# Calculate min and max values after outlier handling
|
| 170 |
+
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
|
| 171 |
+
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
|
| 172 |
+
|
| 173 |
+
options = {
|
| 174 |
+
# "title": {"text": f"{dataset_name}"},
|
| 175 |
+
"tooltip": {
|
| 176 |
+
"trigger": "axis",
|
| 177 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 178 |
+
"triggerOn": 'mousemove',
|
| 179 |
+
},
|
| 180 |
+
"legend": {"data": ['Overall Accuracy']},
|
| 181 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 182 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 183 |
+
"xAxis": [
|
| 184 |
+
{
|
| 185 |
+
"type": "category",
|
| 186 |
+
"boundaryGap": True,
|
| 187 |
+
"triggerEvent": True,
|
| 188 |
+
"data": chart_data['model_show'].tolist(),
|
| 189 |
+
}
|
| 190 |
+
],
|
| 191 |
+
"yAxis": [{"type": "value",
|
| 192 |
+
"min": min_value,
|
| 193 |
+
"max": max_value,
|
| 194 |
+
"boundaryGap": True
|
| 195 |
+
# "splitNumber": 10
|
| 196 |
+
}],
|
| 197 |
+
"series": [{
|
| 198 |
+
"name": f"{dataset_name}",
|
| 199 |
+
"type": "bar",
|
| 200 |
+
"data": chart_data[f'{new_dataset_name}'].tolist(),
|
| 201 |
+
}],
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
events = {
|
| 205 |
+
"click": "function(params) { return params.value }"
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
'''
|
| 216 |
+
Show Examples
|
| 217 |
'''
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# Initialize a session state variable for toggling the chart visibility
|
| 221 |
+
if "show_examples" not in st.session_state:
|
| 222 |
+
st.session_state.show_examples = False
|
| 223 |
+
|
| 224 |
+
# Create a button to toggle visibility
|
| 225 |
+
if st.button("Show Examples"):
|
| 226 |
+
st.session_state.show_examples = not st.session_state.show_examples
|
| 227 |
+
|
| 228 |
+
if st.session_state.show_examples:
|
| 229 |
+
|
| 230 |
+
# if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
|
| 231 |
+
if dataset_name in []:
|
| 232 |
+
pass
|
| 233 |
+
else:
|
| 234 |
+
show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)
|
| 235 |
+
|
app/pages.py
CHANGED
|
@@ -9,8 +9,8 @@ def dataset_contents(dataset, metrics):
|
|
| 9 |
.my-dataset-info {
|
| 10 |
# background-color: #F9EBEA;
|
| 11 |
# padding: 10px;
|
| 12 |
-
color: #
|
| 13 |
-
font-style:
|
| 14 |
font-size: 8px;
|
| 15 |
height: auto;
|
| 16 |
}
|
|
@@ -18,10 +18,10 @@ def dataset_contents(dataset, metrics):
|
|
| 18 |
"""
|
| 19 |
st.markdown(custom_css, unsafe_allow_html=True)
|
| 20 |
st.markdown(f"""<div class="my-dataset-info">
|
| 21 |
-
<p><b>
|
| 22 |
</div>""", unsafe_allow_html=True)
|
| 23 |
st.markdown(f"""<div class="my-dataset-info">
|
| 24 |
-
<p><b>
|
| 25 |
</div>""", unsafe_allow_html=True)
|
| 26 |
|
| 27 |
|
|
@@ -38,12 +38,16 @@ def dashboard():
|
|
| 38 |
|
| 39 |
audio_url = "https://arxiv.org/abs/2406.16020"
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
st.divider()
|
| 42 |
-
|
| 43 |
-
st.markdown("
|
|
|
|
|
|
|
| 44 |
st.markdown('''
|
| 45 |
-
|
| 46 |
-
|
| 47 |
''')
|
| 48 |
|
| 49 |
with st.container():
|
|
@@ -51,7 +55,8 @@ def dashboard():
|
|
| 51 |
with center_co:
|
| 52 |
st.image("./style/audio_overview.png",
|
| 53 |
caption="Overview of the datasets in AudioBench.",
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
st.markdown('''
|
| 57 |
|
|
@@ -60,21 +65,9 @@ def dashboard():
|
|
| 60 |
|
| 61 |
st.markdown("###### :dart: Our Benchmark includes: ")
|
| 62 |
cols = st.columns(10)
|
| 63 |
-
cols[1].metric(label="Tasks", value="8") #delta="Tasks", delta_color="off"
|
| 64 |
-
cols[2].metric(label="Datasets", value="
|
| 65 |
-
cols[3].metric(label="
|
| 66 |
-
|
| 67 |
-
# st.markdown("###### :dart: Supported Models and Datasets: ")
|
| 68 |
-
|
| 69 |
-
# sup = pd.DataFrame(
|
| 70 |
-
# {"Dataset": "LibriSpeech-Clean",
|
| 71 |
-
# "Category": st.selectbox('category', ['Speech Understanding']),
|
| 72 |
-
# "Task": st.selectbox('task', ['Automatic Speech Recognition']),
|
| 73 |
-
# "Metrics": st.selectbox('metrics', ['WER']),
|
| 74 |
-
# "Status":True}
|
| 75 |
-
# )
|
| 76 |
-
|
| 77 |
-
# st.data_editor(sup, num_rows="dynamic")
|
| 78 |
|
| 79 |
|
| 80 |
st.divider()
|
|
@@ -92,7 +85,7 @@ def dashboard():
|
|
| 92 |
''')
|
| 93 |
|
| 94 |
def asr():
|
| 95 |
-
st.title("Automatic Speech Recognition")
|
| 96 |
|
| 97 |
filters_levelone = ['LibriSpeech-Test-Clean',
|
| 98 |
'LibriSpeech-Test-Other',
|
|
@@ -103,41 +96,23 @@ def asr():
|
|
| 103 |
'Earnings22-Test',
|
| 104 |
'Tedlium3-Test',
|
| 105 |
'Tedlium3-Long-form-Test',
|
| 106 |
-
'IMDA-Part1-ASR-Test',
|
| 107 |
-
'IMDA-Part2-ASR-Test'
|
|
|
|
| 108 |
|
| 109 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 110 |
|
| 111 |
with left:
|
| 112 |
-
filter_1 = st.selectbox('
|
| 113 |
|
| 114 |
-
# with middle:
|
| 115 |
-
# if filter_1 == filters_levelone[0]:
|
| 116 |
-
# sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
|
| 117 |
-
# 'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Long-form-Test', 'Earning-21-Test', 'Earning-22-Test']
|
| 118 |
-
# elif filter_1 == filters_levelone[1]:
|
| 119 |
-
# sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
|
| 120 |
-
|
| 121 |
-
# elif filter_1 == filters_levelone[2]:
|
| 122 |
-
# sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
|
| 123 |
-
|
| 124 |
-
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 125 |
-
|
| 126 |
-
# with right:
|
| 127 |
-
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 128 |
-
|
| 129 |
if filter_1:
|
| 130 |
dataset_contents(asr_datsets[filter_1], metrics['wer'])
|
| 131 |
draw('su', 'ASR', filter_1, 'wer', cus_sort=True)
|
| 132 |
-
# else:
|
| 133 |
-
# draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
|
| 134 |
|
| 135 |
-
|
| 136 |
-
## examples
|
| 137 |
|
| 138 |
|
| 139 |
def sqa():
|
| 140 |
-
st.title("Speech Question Answering")
|
| 141 |
|
| 142 |
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
|
| 143 |
|
|
@@ -150,7 +125,7 @@ def sqa():
|
|
| 150 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 151 |
|
| 152 |
with left:
|
| 153 |
-
filter_1 = st.selectbox('
|
| 154 |
|
| 155 |
if filter_1:
|
| 156 |
if filter_1 in binary:
|
|
@@ -160,11 +135,9 @@ def sqa():
|
|
| 160 |
else:
|
| 161 |
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 162 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
| 163 |
-
# else:
|
| 164 |
-
# draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
|
| 165 |
|
| 166 |
def si():
|
| 167 |
-
st.title("Speech
|
| 168 |
|
| 169 |
filters_levelone = ['OpenHermes-Audio-Test',
|
| 170 |
'ALPACA-Audio-Test']
|
|
@@ -172,16 +145,14 @@ def si():
|
|
| 172 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 173 |
|
| 174 |
with left:
|
| 175 |
-
filter_1 = st.selectbox('
|
| 176 |
|
| 177 |
if filter_1:
|
| 178 |
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 179 |
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
| 180 |
-
# else:
|
| 181 |
-
# draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
|
| 182 |
|
| 183 |
def ac():
|
| 184 |
-
st.title("Audio Captioning")
|
| 185 |
|
| 186 |
filters_levelone = ['WavCaps-Test',
|
| 187 |
'AudioCaps-Test']
|
|
@@ -190,29 +161,17 @@ def ac():
|
|
| 190 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 191 |
|
| 192 |
with left:
|
| 193 |
-
filter_1 = st.selectbox('
|
| 194 |
with middle:
|
| 195 |
-
metric = st.selectbox('
|
| 196 |
-
|
| 197 |
-
# with middle:
|
| 198 |
-
# if filter_1 == filters_levelone[0]:
|
| 199 |
-
# sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
|
| 200 |
-
# elif filter_1 == filters_levelone[1]:
|
| 201 |
-
# sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
|
| 202 |
-
|
| 203 |
-
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 204 |
-
|
| 205 |
-
# with right:
|
| 206 |
-
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 207 |
|
| 208 |
if filter_1 or metric:
|
| 209 |
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
|
| 210 |
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
| 211 |
-
|
| 212 |
-
# draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
|
| 213 |
|
| 214 |
def asqa():
|
| 215 |
-
st.title("Audio Scene Question Answering")
|
| 216 |
|
| 217 |
filters_levelone = ['Clotho-AQA-Test',
|
| 218 |
'WavCaps-QA-Test',
|
|
@@ -221,57 +180,39 @@ def asqa():
|
|
| 221 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 222 |
|
| 223 |
with left:
|
| 224 |
-
filter_1 = st.selectbox('
|
| 225 |
|
| 226 |
if filter_1:
|
| 227 |
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 228 |
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
|
| 229 |
-
|
| 230 |
-
# draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')
|
| 231 |
|
| 232 |
def er():
|
| 233 |
-
st.title("Emotion Recognition")
|
| 234 |
|
| 235 |
filters_levelone = ['IEMOCAP-Emotion-Test',
|
| 236 |
'MELD-Sentiment-Test',
|
| 237 |
'MELD-Emotion-Test']
|
| 238 |
-
# sort_leveltwo = []
|
| 239 |
|
| 240 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 241 |
|
| 242 |
with left:
|
| 243 |
-
filter_1 = st.selectbox('
|
| 244 |
-
|
| 245 |
-
# with middle:
|
| 246 |
-
# if filter_1 == filters_levelone[0]:
|
| 247 |
-
# sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
|
| 248 |
-
|
| 249 |
-
# elif filter_1 == filters_levelone[1]:
|
| 250 |
-
# sort_leveltwo = ['VoxCeleb1-Accent-Test']
|
| 251 |
-
|
| 252 |
-
# elif filter_1 == filters_levelone[2]:
|
| 253 |
-
# sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
|
| 254 |
-
|
| 255 |
-
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 256 |
-
|
| 257 |
-
# with right:
|
| 258 |
-
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 259 |
|
| 260 |
if filter_1:
|
| 261 |
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
| 262 |
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
| 263 |
-
|
| 264 |
-
# draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
|
| 265 |
|
| 266 |
def ar():
|
| 267 |
-
st.title("Accent Recognition")
|
| 268 |
|
| 269 |
filters_levelone = ['VoxCeleb-Accent-Test']
|
| 270 |
|
| 271 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 272 |
|
| 273 |
with left:
|
| 274 |
-
filter_1 = st.selectbox('
|
| 275 |
|
| 276 |
|
| 277 |
if filter_1:
|
|
@@ -280,7 +221,7 @@ def ar():
|
|
| 280 |
|
| 281 |
|
| 282 |
def gr():
|
| 283 |
-
st.title("Gender Recognition")
|
| 284 |
|
| 285 |
filters_levelone = ['VoxCeleb-Gender-Test',
|
| 286 |
'IEMOCAP-Gender-Test']
|
|
@@ -288,16 +229,15 @@ def gr():
|
|
| 288 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 289 |
|
| 290 |
with left:
|
| 291 |
-
filter_1 = st.selectbox('
|
| 292 |
|
| 293 |
if filter_1:
|
| 294 |
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
| 295 |
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
| 296 |
-
|
| 297 |
-
# draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
|
| 298 |
|
| 299 |
def spt():
|
| 300 |
-
st.title("Speech Translation")
|
| 301 |
|
| 302 |
filters_levelone = ['Covost2-EN-ID-test',
|
| 303 |
'Covost2-EN-ZH-test',
|
|
@@ -309,7 +249,7 @@ def spt():
|
|
| 309 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 310 |
|
| 311 |
with left:
|
| 312 |
-
filter_1 = st.selectbox('
|
| 313 |
|
| 314 |
if filter_1:
|
| 315 |
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
|
@@ -318,17 +258,15 @@ def spt():
|
|
| 318 |
# draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
|
| 319 |
|
| 320 |
def cnasr():
|
| 321 |
-
st.title("
|
| 322 |
|
| 323 |
filters_levelone = ['Aishell-ASR-ZH-Test']
|
| 324 |
|
| 325 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 326 |
|
| 327 |
with left:
|
| 328 |
-
filter_1 = st.selectbox('
|
| 329 |
|
| 330 |
if filter_1:
|
| 331 |
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
|
| 332 |
draw('su', 'CNASR', filter_1, 'wer')
|
| 333 |
-
# else:
|
| 334 |
-
# draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
|
|
|
|
| 9 |
.my-dataset-info {
|
| 10 |
# background-color: #F9EBEA;
|
| 11 |
# padding: 10px;
|
| 12 |
+
color: #050505;
|
| 13 |
+
font-style: normal;
|
| 14 |
font-size: 8px;
|
| 15 |
height: auto;
|
| 16 |
}
|
|
|
|
| 18 |
"""
|
| 19 |
st.markdown(custom_css, unsafe_allow_html=True)
|
| 20 |
st.markdown(f"""<div class="my-dataset-info">
|
| 21 |
+
<p><b>About this dataset</b>: {dataset}</p>
|
| 22 |
</div>""", unsafe_allow_html=True)
|
| 23 |
st.markdown(f"""<div class="my-dataset-info">
|
| 24 |
+
<p><b>About this metric</b>: {metrics}</p>
|
| 25 |
</div>""", unsafe_allow_html=True)
|
| 26 |
|
| 27 |
|
|
|
|
| 38 |
|
| 39 |
audio_url = "https://arxiv.org/abs/2406.16020"
|
| 40 |
|
| 41 |
+
|
| 42 |
+
st.markdown("#### News")
|
| 43 |
+
st.markdown("Dec, 2024: Update layout and support comparison between models with similar model sizes.")
|
| 44 |
+
|
| 45 |
st.divider()
|
| 46 |
+
|
| 47 |
+
st.markdown("#### What is [AudioBench](%s)?" % audio_url)
|
| 48 |
+
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models.")
|
| 49 |
+
st.markdown("##### :dizzy: A evaluation benchmark that we consistently put effort in updating and maintaining.")
|
| 50 |
st.markdown('''
|
|
|
|
|
|
|
| 51 |
''')
|
| 52 |
|
| 53 |
with st.container():
|
|
|
|
| 55 |
with center_co:
|
| 56 |
st.image("./style/audio_overview.png",
|
| 57 |
caption="Overview of the datasets in AudioBench.",
|
| 58 |
+
use_container_width = True
|
| 59 |
+
)
|
| 60 |
|
| 61 |
st.markdown('''
|
| 62 |
|
|
|
|
| 65 |
|
| 66 |
st.markdown("###### :dart: Our Benchmark includes: ")
|
| 67 |
cols = st.columns(10)
|
| 68 |
+
cols[1].metric(label="Tasks", value=">8") #delta="Tasks", delta_color="off"
|
| 69 |
+
cols[2].metric(label="Datasets", value=">30")
|
| 70 |
+
cols[3].metric(label="Evaluated Models", value=">5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
st.divider()
|
|
|
|
| 85 |
''')
|
| 86 |
|
| 87 |
def asr():
|
| 88 |
+
st.title("Task: Automatic Speech Recognition")
|
| 89 |
|
| 90 |
filters_levelone = ['LibriSpeech-Test-Clean',
|
| 91 |
'LibriSpeech-Test-Other',
|
|
|
|
| 96 |
'Earnings22-Test',
|
| 97 |
'Tedlium3-Test',
|
| 98 |
'Tedlium3-Long-form-Test',
|
| 99 |
+
#'IMDA-Part1-ASR-Test',
|
| 100 |
+
#'IMDA-Part2-ASR-Test'
|
| 101 |
+
]
|
| 102 |
|
| 103 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 104 |
|
| 105 |
with left:
|
| 106 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if filter_1:
|
| 109 |
dataset_contents(asr_datsets[filter_1], metrics['wer'])
|
| 110 |
draw('su', 'ASR', filter_1, 'wer', cus_sort=True)
|
|
|
|
|
|
|
| 111 |
|
|
|
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
def sqa():
|
| 115 |
+
st.title("Task: Speech Question Answering")
|
| 116 |
|
| 117 |
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
|
| 118 |
|
|
|
|
| 125 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 126 |
|
| 127 |
with left:
|
| 128 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 129 |
|
| 130 |
if filter_1:
|
| 131 |
if filter_1 in binary:
|
|
|
|
| 135 |
else:
|
| 136 |
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 137 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
|
|
|
|
|
|
| 138 |
|
| 139 |
def si():
|
| 140 |
+
st.title("Task: Speech Instruction")
|
| 141 |
|
| 142 |
filters_levelone = ['OpenHermes-Audio-Test',
|
| 143 |
'ALPACA-Audio-Test']
|
|
|
|
| 145 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 146 |
|
| 147 |
with left:
|
| 148 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 149 |
|
| 150 |
if filter_1:
|
| 151 |
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 152 |
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
|
|
|
|
|
|
| 153 |
|
| 154 |
def ac():
|
| 155 |
+
st.title("Task: Audio Captioning")
|
| 156 |
|
| 157 |
filters_levelone = ['WavCaps-Test',
|
| 158 |
'AudioCaps-Test']
|
|
|
|
| 161 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 162 |
|
| 163 |
with left:
|
| 164 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 165 |
with middle:
|
| 166 |
+
metric = st.selectbox('Metric', filters_leveltwo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
if filter_1 or metric:
|
| 169 |
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
|
| 170 |
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
| 171 |
+
|
|
|
|
| 172 |
|
| 173 |
def asqa():
|
| 174 |
+
st.title("Task: Audio Scene Question Answering")
|
| 175 |
|
| 176 |
filters_levelone = ['Clotho-AQA-Test',
|
| 177 |
'WavCaps-QA-Test',
|
|
|
|
| 180 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 181 |
|
| 182 |
with left:
|
| 183 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 184 |
|
| 185 |
if filter_1:
|
| 186 |
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
| 187 |
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
|
| 188 |
+
|
|
|
|
| 189 |
|
| 190 |
def er():
|
| 191 |
+
st.title("Task: Emotion Recognition")
|
| 192 |
|
| 193 |
filters_levelone = ['IEMOCAP-Emotion-Test',
|
| 194 |
'MELD-Sentiment-Test',
|
| 195 |
'MELD-Emotion-Test']
|
|
|
|
| 196 |
|
| 197 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 198 |
|
| 199 |
with left:
|
| 200 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
if filter_1:
|
| 203 |
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
| 204 |
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
| 205 |
+
|
|
|
|
| 206 |
|
| 207 |
def ar():
|
| 208 |
+
st.title("Task: Accent Recognition")
|
| 209 |
|
| 210 |
filters_levelone = ['VoxCeleb-Accent-Test']
|
| 211 |
|
| 212 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 213 |
|
| 214 |
with left:
|
| 215 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 216 |
|
| 217 |
|
| 218 |
if filter_1:
|
|
|
|
| 221 |
|
| 222 |
|
| 223 |
def gr():
|
| 224 |
+
st.title("Task: Gender Recognition")
|
| 225 |
|
| 226 |
filters_levelone = ['VoxCeleb-Gender-Test',
|
| 227 |
'IEMOCAP-Gender-Test']
|
|
|
|
| 229 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 230 |
|
| 231 |
with left:
|
| 232 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 233 |
|
| 234 |
if filter_1:
|
| 235 |
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
| 236 |
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
| 237 |
+
|
|
|
|
| 238 |
|
| 239 |
def spt():
|
| 240 |
+
st.title("Task: Speech Translation")
|
| 241 |
|
| 242 |
filters_levelone = ['Covost2-EN-ID-test',
|
| 243 |
'Covost2-EN-ZH-test',
|
|
|
|
| 249 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 250 |
|
| 251 |
with left:
|
| 252 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 253 |
|
| 254 |
if filter_1:
|
| 255 |
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
|
|
|
| 258 |
# draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
|
| 259 |
|
| 260 |
def cnasr():
|
| 261 |
+
st.title("Task: Automatic Speech Recognition (Chinese)")
|
| 262 |
|
| 263 |
filters_levelone = ['Aishell-ASR-ZH-Test']
|
| 264 |
|
| 265 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 266 |
|
| 267 |
with left:
|
| 268 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
| 269 |
|
| 270 |
if filter_1:
|
| 271 |
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
|
| 272 |
draw('su', 'CNASR', filter_1, 'wer')
|
|
|
|
|
|
app/show_examples.py
CHANGED
|
@@ -2,6 +2,9 @@ import streamlit as st
|
|
| 2 |
import datasets
|
| 3 |
import numpy as np
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
def show_examples(category_name, dataset_name, model_lists, display_model_names):
|
| 6 |
st.divider()
|
| 7 |
sample_folder = f"./examples/{category_name}/{dataset_name}"
|
|
@@ -16,57 +19,6 @@ def show_examples(category_name, dataset_name, model_lists, display_model_names)
|
|
| 16 |
# with col1:
|
| 17 |
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
|
| 18 |
|
| 19 |
-
# with col2:
|
| 20 |
-
# with st.container():
|
| 21 |
-
# custom_css = """
|
| 22 |
-
# <style>
|
| 23 |
-
# .my-container-question {
|
| 24 |
-
# background-color: #F5EEF8;
|
| 25 |
-
# padding: 10px;
|
| 26 |
-
# border-radius: 10px;
|
| 27 |
-
# height: auto;
|
| 28 |
-
# }
|
| 29 |
-
# </style>
|
| 30 |
-
# """
|
| 31 |
-
# st.markdown(custom_css, unsafe_allow_html=True)
|
| 32 |
-
|
| 33 |
-
# if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 34 |
-
|
| 35 |
-
# choices = dataset[index]['other_attributes']['choices']
|
| 36 |
-
# if isinstance(choices, str):
|
| 37 |
-
# choices_text = choices
|
| 38 |
-
# elif isinstance(choices, list):
|
| 39 |
-
# choices_text = ' '.join(i for i in choices)
|
| 40 |
-
|
| 41 |
-
# question_text = f"""<div class="my-container-question">
|
| 42 |
-
# <p>QUESTION: {dataset[index]['instruction']['text']}</p>
|
| 43 |
-
# <p>CHOICES: {choices_text}</p>
|
| 44 |
-
# </div>
|
| 45 |
-
# """
|
| 46 |
-
# else:
|
| 47 |
-
# question_text = f"""<div class="my-container-question">
|
| 48 |
-
# <p>QUESTION: {dataset[index]['instruction']['text']}</p>
|
| 49 |
-
# </div>"""
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# st.markdown(question_text, unsafe_allow_html=True)
|
| 53 |
-
|
| 54 |
-
# with st.container():
|
| 55 |
-
# custom_css = """
|
| 56 |
-
# <style>
|
| 57 |
-
# .my-container-answer {
|
| 58 |
-
# background-color: #F9EBEA;
|
| 59 |
-
# padding: 10px;
|
| 60 |
-
# border-radius: 10px;
|
| 61 |
-
# height: auto;
|
| 62 |
-
# }
|
| 63 |
-
# </style>
|
| 64 |
-
# """
|
| 65 |
-
# st.markdown(custom_css, unsafe_allow_html=True)
|
| 66 |
-
# st.markdown(f"""<div class="my-container-answer">
|
| 67 |
-
# <p>CORRECT ANSWER: {dataset[index]['answer']['text']}</p>
|
| 68 |
-
# </div>""", unsafe_allow_html=True)
|
| 69 |
-
|
| 70 |
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 71 |
|
| 72 |
choices = dataset[index]['other_attributes']['choices']
|
|
@@ -78,6 +30,8 @@ def show_examples(category_name, dataset_name, model_lists, display_model_names)
|
|
| 78 |
question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
|
| 79 |
else:
|
| 80 |
question_text = f"""{dataset[index]['instruction']['text']}"""
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# st.divider()
|
| 83 |
with st.container():
|
|
@@ -99,33 +53,44 @@ def show_examples(category_name, dataset_name, model_lists, display_model_names)
|
|
| 99 |
|
| 100 |
s = f"""<tr>
|
| 101 |
<td><b>REFERENCE</td>
|
| 102 |
-
<td><b>{question_text.replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')}
|
| 103 |
</td>
|
| 104 |
-
<td><b>{dataset[index]['answer']['text']}
|
| 105 |
</td>
|
| 106 |
</tr>
|
| 107 |
"""
|
| 108 |
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 109 |
for model in model_lists:
|
| 110 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
s += f"""<tr>
|
| 112 |
<td>{display_model_names[model]}</td>
|
| 113 |
<td>
|
| 114 |
{dataset[index][model]['text'].replace('Choices:', '<br>Choices:').replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')
|
| 115 |
}
|
| 116 |
</td>
|
| 117 |
-
<td>{
|
| 118 |
</tr>"""
|
| 119 |
except:
|
| 120 |
print(f"{model} is not in {dataset_name}")
|
| 121 |
continue
|
| 122 |
else:
|
| 123 |
for model in model_lists:
|
|
|
|
|
|
|
|
|
|
| 124 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
s += f"""<tr>
|
| 126 |
<td>{display_model_names[model]}</td>
|
| 127 |
-
<td>{dataset[index][model]['text']}</td>
|
| 128 |
-
<td>{
|
| 129 |
</tr>"""
|
| 130 |
except:
|
| 131 |
print(f"{model} is not in {dataset_name}")
|
|
@@ -136,8 +101,8 @@ def show_examples(category_name, dataset_name, model_lists, display_model_names)
|
|
| 136 |
<thead>
|
| 137 |
<tr style="text-align: center;">
|
| 138 |
<th style="width:20%">MODEL</th>
|
| 139 |
-
<th style="width:
|
| 140 |
-
<th style="width:
|
| 141 |
</tr>
|
| 142 |
{s}
|
| 143 |
</thead>
|
|
|
|
| 2 |
import datasets
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
+
import html
|
| 6 |
+
|
| 7 |
+
|
| 8 |
def show_examples(category_name, dataset_name, model_lists, display_model_names):
|
| 9 |
st.divider()
|
| 10 |
sample_folder = f"./examples/{category_name}/{dataset_name}"
|
|
|
|
| 19 |
# with col1:
|
| 20 |
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 23 |
|
| 24 |
choices = dataset[index]['other_attributes']['choices']
|
|
|
|
| 30 |
question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
|
| 31 |
else:
|
| 32 |
question_text = f"""{dataset[index]['instruction']['text']}"""
|
| 33 |
+
|
| 34 |
+
question_text = html.escape(question_text)
|
| 35 |
|
| 36 |
# st.divider()
|
| 37 |
with st.container():
|
|
|
|
| 53 |
|
| 54 |
s = f"""<tr>
|
| 55 |
<td><b>REFERENCE</td>
|
| 56 |
+
<td><b>{html.escape(question_text.replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)'))}
|
| 57 |
</td>
|
| 58 |
+
<td><b>{html.escape(dataset[index]['answer']['text'])}
|
| 59 |
</td>
|
| 60 |
</tr>
|
| 61 |
"""
|
| 62 |
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
|
| 63 |
for model in model_lists:
|
| 64 |
try:
|
| 65 |
+
|
| 66 |
+
model_prediction = dataset[index][model]['model_prediction']
|
| 67 |
+
model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')
|
| 68 |
+
|
| 69 |
s += f"""<tr>
|
| 70 |
<td>{display_model_names[model]}</td>
|
| 71 |
<td>
|
| 72 |
{dataset[index][model]['text'].replace('Choices:', '<br>Choices:').replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')
|
| 73 |
}
|
| 74 |
</td>
|
| 75 |
+
<td>{html.escape(model_prediction)}</td>
|
| 76 |
</tr>"""
|
| 77 |
except:
|
| 78 |
print(f"{model} is not in {dataset_name}")
|
| 79 |
continue
|
| 80 |
else:
|
| 81 |
for model in model_lists:
|
| 82 |
+
|
| 83 |
+
print(dataset[index][model]['model_prediction'])
|
| 84 |
+
|
| 85 |
try:
|
| 86 |
+
|
| 87 |
+
model_prediction = dataset[index][model]['model_prediction']
|
| 88 |
+
model_prediction = model_prediction.replace('<','').replace('>','').replace('\n','(newline)').replace('*','')
|
| 89 |
+
|
| 90 |
s += f"""<tr>
|
| 91 |
<td>{display_model_names[model]}</td>
|
| 92 |
+
<td>{html.escape(dataset[index][model]['text'])}</td>
|
| 93 |
+
<td>{html.escape(model_prediction)}</td>
|
| 94 |
</tr>"""
|
| 95 |
except:
|
| 96 |
print(f"{model} is not in {dataset_name}")
|
|
|
|
| 101 |
<thead>
|
| 102 |
<tr style="text-align: center;">
|
| 103 |
<th style="width:20%">MODEL</th>
|
| 104 |
+
<th style="width:30%">QUESTION</th>
|
| 105 |
+
<th style="width:50%">MODEL PREDICTION</th>
|
| 106 |
</tr>
|
| 107 |
{s}
|
| 108 |
</thead>
|