Upload folder using huggingface_hub
Browse files- app/draw_diagram.py +13 -17
- app/pages.py +191 -51
app/draw_diagram.py
CHANGED
|
@@ -59,19 +59,14 @@ def nav_to(value):
|
|
| 59 |
except:
|
| 60 |
pass
|
| 61 |
|
| 62 |
-
def draw(folder_name,category_name, dataset_name,
|
| 63 |
|
| 64 |
-
folder = f"./results/{
|
| 65 |
|
| 66 |
display_names = {
|
| 67 |
-
'
|
| 68 |
-
'
|
| 69 |
-
'
|
| 70 |
-
'AC': 'Audio Captioning',
|
| 71 |
-
'AQA': 'Audio Scene Question Answering',
|
| 72 |
-
'AR': 'Accent Recognition',
|
| 73 |
-
'GR': 'Gender Recognition',
|
| 74 |
-
'ER': 'Emotion Recognition'
|
| 75 |
}
|
| 76 |
|
| 77 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
|
@@ -81,14 +76,15 @@ def draw(folder_name,category_name, dataset_name, sorted):
|
|
| 81 |
return
|
| 82 |
|
| 83 |
|
| 84 |
-
if sorted == 'Ascending':
|
| 85 |
-
|
| 86 |
-
else:
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
-
chart_data = chart_data.sort_values(by=[
|
| 92 |
|
| 93 |
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 94 |
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
|
@@ -106,7 +102,7 @@ def draw(folder_name,category_name, dataset_name, sorted):
|
|
| 106 |
|
| 107 |
|
| 108 |
options = {
|
| 109 |
-
"title": {"text": f"{display_names[
|
| 110 |
"tooltip": {
|
| 111 |
"trigger": "axis",
|
| 112 |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
|
|
|
| 59 |
except:
|
| 60 |
pass
|
| 61 |
|
| 62 |
+
def draw(folder_name, category_name, dataset_name, metrics):
|
| 63 |
|
| 64 |
+
folder = f"./results/{metrics}/"
|
| 65 |
|
| 66 |
display_names = {
|
| 67 |
+
'SU': 'Speech Understanding',
|
| 68 |
+
'ASU': 'Audio Scene Understanding',
|
| 69 |
+
'VU': 'Voice Understanding'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
}
|
| 71 |
|
| 72 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
|
|
|
| 76 |
return
|
| 77 |
|
| 78 |
|
| 79 |
+
# if sorted == 'Ascending':
|
| 80 |
+
# ascend = True
|
| 81 |
+
# else:
|
| 82 |
+
# ascend = False
|
| 83 |
|
| 84 |
+
dataset_name = dataset_name.replace('-', '_').lower()
|
| 85 |
+
chart_data = chart_data[['Model', dataset_name]]
|
| 86 |
|
| 87 |
+
chart_data = chart_data.sort_values(by=[dataset_name], ascending=False)
|
| 88 |
|
| 89 |
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 90 |
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
options = {
|
| 105 |
+
"title": {"text": f"{display_names[folder_name.upper()]}"},
|
| 106 |
"tooltip": {
|
| 107 |
"trigger": "axis",
|
| 108 |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
app/pages.py
CHANGED
|
@@ -68,93 +68,233 @@ def dashboard():
|
|
| 68 |
}
|
| 69 |
''')
|
| 70 |
|
| 71 |
-
def
|
| 72 |
-
st.title("Speech
|
| 73 |
|
| 74 |
-
filters_levelone = ['
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 78 |
|
| 79 |
with left:
|
| 80 |
-
filter_1 = st.selectbox('Select
|
| 81 |
|
| 82 |
-
with middle:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
with right:
|
| 95 |
-
|
| 96 |
|
| 97 |
-
if filter_1
|
| 98 |
-
draw('su',
|
| 99 |
else:
|
| 100 |
-
draw('su', 'ASR', 'LibriSpeech-Test-Clean', '
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
|
|
|
| 105 |
|
| 106 |
-
filters_levelone =
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 110 |
|
| 111 |
with left:
|
| 112 |
-
filter_1 = st.selectbox('Select
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
with middle:
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
|
| 122 |
-
with right:
|
| 123 |
-
|
| 124 |
|
| 125 |
-
if filter_1 or
|
| 126 |
-
draw('asu',filter_1,
|
| 127 |
else:
|
| 128 |
-
draw('asu', '
|
| 129 |
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
sort_leveltwo = []
|
| 136 |
|
| 137 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 138 |
|
| 139 |
with left:
|
| 140 |
-
filter_1 = st.selectbox('Select
|
| 141 |
|
| 142 |
-
with middle:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
|
| 154 |
-
with right:
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
else:
|
| 160 |
-
draw('
|
|
|
|
| 68 |
}
|
| 69 |
''')
|
| 70 |
|
| 71 |
+
def asr():
|
| 72 |
+
st.title("Automatic Speech Recognition")
|
| 73 |
|
| 74 |
+
filters_levelone = ['LibriSpeech-Test-Clean',
|
| 75 |
+
'LibriSpeech-Test-Other',
|
| 76 |
+
'Common-Voice-15-En-Test',
|
| 77 |
+
'Peoples-Speech-Test',
|
| 78 |
+
'GigaSpeech-Test',
|
| 79 |
+
'Earning-21-Test',
|
| 80 |
+
'Earning-22-Test',
|
| 81 |
+
'Tedlium3-Test',
|
| 82 |
+
'Tedlium3-Longform-Test',
|
| 83 |
+
'IMDA-Part1-ASR-Test',
|
| 84 |
+
'IMDA-Part2-ASR-Test',
|
| 85 |
+
'IMDA-Part3-ASR-Test',
|
| 86 |
+
'IMDA-Part4-ASR-Test',
|
| 87 |
+
'IMDA-Part5-ASR-Test',
|
| 88 |
+
'IMDA-Part6-ASR-Test']
|
| 89 |
|
| 90 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 91 |
|
| 92 |
with left:
|
| 93 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 94 |
|
| 95 |
+
# with middle:
|
| 96 |
+
# if filter_1 == filters_levelone[0]:
|
| 97 |
+
# sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
|
| 98 |
+
# 'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Longform-Test', 'Earning-21-Test', 'Earning-22-Test']
|
| 99 |
+
# elif filter_1 == filters_levelone[1]:
|
| 100 |
+
# sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
|
| 101 |
|
| 102 |
+
# elif filter_1 == filters_levelone[2]:
|
| 103 |
+
# sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
|
| 104 |
|
| 105 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 106 |
|
| 107 |
+
# with right:
|
| 108 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 109 |
|
| 110 |
+
if filter_1:
|
| 111 |
+
draw('su', 'ASR', filter_1, 'wer')
|
| 112 |
else:
|
| 113 |
+
draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
|
| 114 |
|
| 115 |
+
def sqa():
|
| 116 |
+
st.title("Speech Question Answering")
|
| 117 |
+
|
| 118 |
+
binary = ['CN-College-Listen-Test', 'DREAM-TTS-MCQ-Test']
|
| 119 |
|
| 120 |
+
rest = ['SLUE-P2-SQA5-Test',
|
| 121 |
+
'Public-SG-SpeechQA-Test',
|
| 122 |
+
'Spoken-Squad-v1']
|
| 123 |
|
| 124 |
+
filters_levelone = binary + rest
|
| 125 |
+
|
| 126 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 127 |
+
|
| 128 |
+
with left:
|
| 129 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 130 |
+
|
| 131 |
+
if filter_1:
|
| 132 |
+
if filter_1 in binary:
|
| 133 |
+
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
|
| 134 |
+
else:
|
| 135 |
+
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
| 136 |
+
else:
|
| 137 |
+
draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
|
| 138 |
+
|
| 139 |
+
def si():
|
| 140 |
+
st.title("Speech Question Answering")
|
| 141 |
+
|
| 142 |
+
filters_levelone = ['OpenHermes-Audio-Test',
|
| 143 |
+
'ALPACA-Audio-Test']
|
| 144 |
|
| 145 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 146 |
|
| 147 |
with left:
|
| 148 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 149 |
+
|
| 150 |
+
if filter_1:
|
| 151 |
+
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
| 152 |
+
else:
|
| 153 |
+
draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
|
| 154 |
+
|
| 155 |
+
def ac():
|
| 156 |
+
st.title("Audio Captioning")
|
| 157 |
+
|
| 158 |
+
filters_levelone = ['WavCaps-Test',
|
| 159 |
+
'AudioCaps-Test']
|
| 160 |
+
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
| 161 |
|
| 162 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 163 |
+
|
| 164 |
+
with left:
|
| 165 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 166 |
with middle:
|
| 167 |
+
metric = st.selectbox('Select Metric', filters_leveltwo)
|
| 168 |
+
|
| 169 |
+
# with middle:
|
| 170 |
+
# if filter_1 == filters_levelone[0]:
|
| 171 |
+
# sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
|
| 172 |
+
# elif filter_1 == filters_levelone[1]:
|
| 173 |
+
# sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
|
| 174 |
|
| 175 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 176 |
|
| 177 |
+
# with right:
|
| 178 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 179 |
|
| 180 |
+
if filter_1 or metric:
|
| 181 |
+
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
| 182 |
else:
|
| 183 |
+
draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
|
| 184 |
|
| 185 |
+
def asqa():
|
| 186 |
+
st.title("Audio Scene Question Answering")
|
| 187 |
|
| 188 |
+
filters_levelone = ['Clotho-AQA-Test',
|
| 189 |
+
'WavCaps-QA-Test',
|
| 190 |
+
'AudioCaps-QA-Test']
|
| 191 |
+
|
| 192 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 193 |
+
|
| 194 |
+
with left:
|
| 195 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 196 |
+
|
| 197 |
+
if filter_1:
|
| 198 |
+
draw('asu', 'AC',filter_1, 'llama3_70b_judge')
|
| 199 |
+
else:
|
| 200 |
+
draw('asu', 'AC', 'Clotho-AQA-Test', 'llama3_70b_judge')
|
| 201 |
|
| 202 |
+
def er():
|
| 203 |
+
st.title("Emotion Recognition")
|
| 204 |
+
|
| 205 |
+
filters_levelone = ['IEMOCAP-Emotion-Test',
|
| 206 |
+
'MELD-Sentiment-Test',
|
| 207 |
+
'MELD-Emotion-Test']
|
| 208 |
sort_leveltwo = []
|
| 209 |
|
| 210 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 211 |
|
| 212 |
with left:
|
| 213 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 214 |
|
| 215 |
+
# with middle:
|
| 216 |
+
# if filter_1 == filters_levelone[0]:
|
| 217 |
+
# sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
|
| 218 |
|
| 219 |
+
# elif filter_1 == filters_levelone[1]:
|
| 220 |
+
# sort_leveltwo = ['VoxCeleb1-Accent-Test']
|
| 221 |
|
| 222 |
+
# elif filter_1 == filters_levelone[2]:
|
| 223 |
+
# sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
|
| 224 |
|
| 225 |
+
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
| 226 |
|
| 227 |
+
# with right:
|
| 228 |
+
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 229 |
+
|
| 230 |
+
if filter_1:
|
| 231 |
+
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
| 232 |
+
else:
|
| 233 |
+
draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
|
| 234 |
+
|
| 235 |
+
def ar():
|
| 236 |
+
st.title("Accent Recognition")
|
| 237 |
|
| 238 |
+
filters_levelone = ['VoxCeleb1-Accent-Test']
|
| 239 |
+
|
| 240 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 241 |
+
|
| 242 |
+
with left:
|
| 243 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
if filter_1:
|
| 247 |
+
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
|
| 248 |
+
else:
|
| 249 |
+
draw('vu', 'AR', 'VoxCeleb1-Accent-Test', 'llama3_70b_judge')
|
| 250 |
+
|
| 251 |
+
def gr():
|
| 252 |
+
st.title("Emotion Recognition")
|
| 253 |
+
|
| 254 |
+
filters_levelone = ['VoxCeleb1-Gender-Test',
|
| 255 |
+
'IEMOCAP-Gender-Test']
|
| 256 |
+
|
| 257 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 258 |
+
|
| 259 |
+
with left:
|
| 260 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 261 |
+
|
| 262 |
+
if filter_1:
|
| 263 |
+
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
| 264 |
+
else:
|
| 265 |
+
draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
|
| 266 |
+
|
| 267 |
+
def st():
|
| 268 |
+
st.title("Speech Translation")
|
| 269 |
+
|
| 270 |
+
filters_levelone = ['Covost2-EN-ID-test',
|
| 271 |
+
'Covost2-EN-ZH-test',
|
| 272 |
+
'Covost2-EN-TA-test',
|
| 273 |
+
'Covost2-ID-EN-test',
|
| 274 |
+
'Covost2-ZH-EN-test',
|
| 275 |
+
'Covost2-TA-EN-test']
|
| 276 |
+
|
| 277 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 278 |
+
|
| 279 |
+
with left:
|
| 280 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 281 |
+
|
| 282 |
+
if filter_1:
|
| 283 |
+
draw('su', 'ST', filter_1, 'bleu')
|
| 284 |
+
else:
|
| 285 |
+
draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
|
| 286 |
+
|
| 287 |
+
def cnasr():
|
| 288 |
+
st.title("Chinese Automatic Speech Recognition")
|
| 289 |
+
|
| 290 |
+
filters_levelone = ['Aishell-ASR-ZH-Test']
|
| 291 |
+
|
| 292 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 293 |
+
|
| 294 |
+
with left:
|
| 295 |
+
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
| 296 |
+
|
| 297 |
+
if filter_1:
|
| 298 |
+
draw('su', 'CNASR', filter_1, 'wer')
|
| 299 |
else:
|
| 300 |
+
draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
|