Spaces:
Running
Running
File size: 1,270 Bytes
caff61e bccf53b dc80d48 4fa263e caff61e 35669c6 e82b28e 248b9ce 8378a4b 36e1064 8378a4b e82b28e 4fa263e 8378a4b 35669c6 8378a4b 35669c6 8378a4b a29d5e2 35669c6 e82b28e 1195707 8378a4b 4fa263e e82b28e 46e3370 35669c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import torch
import numpy as np
import gradio as gr
from PIL import Image
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load YOLOv5s model (smallest and fastest variant)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
# Enable half-precision for CUDA devices
if device.type == 'cuda':
model.half()
def detect_objects(image):
# Convert numpy array to PIL Image
image_pil = Image.fromarray(image)
# Perform inference without gradient calculation
with torch.no_grad():
results = model(image_pil)
# Render detections using optimized YOLOv5 method
rendered_images = results.render()
# Return the first rendered image as numpy array
return np.array(rendered_images[0]) if rendered_images else image
# Gradio interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="High-Speed Object Detection with YOLOv5s",
description="Optimized for speed using YOLOv5s and GPU acceleration.",
allow_flagging="never",
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
)
iface.launch() |