Spaces:
Running
Running
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
# Device configuration | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load YOLOv5s model | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) | |
# Performance optimizations | |
model.conf = 0.5 # Confidence threshold (adjust for speed/accuracy balance) | |
if device.type == 'cuda': | |
model.half() # FP16 precision | |
def process_frame(image): | |
"""Process single frame with error handling""" | |
if image is None: | |
return None | |
try: | |
# Convert numpy array to PIL Image | |
image_pil = Image.fromarray(image) | |
# Perform inference | |
with torch.no_grad(): | |
results = model(image_pil) | |
# Render results | |
rendered_images = results.render() | |
return np.array(rendered_images[0]) if rendered_images else image | |
except Exception as e: | |
print(f"Processing error: {e}") | |
return image | |
with gr.Blocks(title="Real-Time Object Detection") as app: | |
gr.Markdown("# Real-Time Object Detection with Dual Input") | |
gr.Markdown("Supports live webcam streaming and image uploads") | |
with gr.Tabs(): | |
with gr.TabItem("๐ท Live Camera"): | |
with gr.Row(): | |
webcam_input = gr.Video(label="Live Feed", streaming=True) | |
live_output = gr.Image(label="Processed Feed", streaming=True) | |
webcam_input.change(process_frame, webcam_input, live_output) | |
with gr.TabItem("๐ผ๏ธ Image Upload"): | |
with gr.Row(): | |
upload_input = gr.Image(type="numpy", label="Upload Image") | |
upload_output = gr.Image(label="Detection Result") | |
upload_input.change(process_frame, upload_input, upload_output) | |
gr.Markdown("Performance Settings") | |
with gr.Accordion("Advanced Settings", open=False): | |
gr.Slider(minimum=0.1, maximum=0.9, value=0.5, | |
label="Confidence Threshold", interactive=True) | |
gr.Checkbox(label="Enable FP16 Acceleration", value=True) | |
# Configure queue and launch | |
app.queue().launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
enable_queue=True | |
) | |