Aumkeshchy2003's picture
Update app.py
151b93e verified
raw
history blame
4.28 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
import onnxruntime
from pathlib import Path
from ultralytics import YOLO
# Load YOLOv5 model without AutoShape
model = torch.hub.load("ultralytics/yolov5", "yolov5n", source="local")
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Fuse layers for optimization
model.fuse()
# Export to ONNX format
os.makedirs("models", exist_ok=True)
model_path = Path("models/yolov5n.onnx")
torch.onnx.export(
model,
torch.zeros(1, 3, 640, 640).to(device), # Input tensor
str(model_path),
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=["images"],
output_names=["output"],
dynamic_axes={"images": {0: "batch_size"}, "output": {0: "batch_size"}}
)
# Load ONNX model for inference
session = onnxruntime.InferenceSession(str(model_path), providers=['CUDAExecutionProvider'])
# Generate random colors for each class
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(80, 3))
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
# Preprocess image
original_shape = image.shape
input_shape = (640, 640)
image_resized = cv2.resize(image, input_shape)
image_norm = image_resized.astype(np.float32) / 255.0
image_transposed = np.transpose(image_norm, (2, 0, 1))
image_batch = np.expand_dims(image_transposed, axis=0)
# Get input name and run inference
input_name = session.get_inputs()[0].name
outputs = session.run(None, {input_name: image_batch})
# Process detections
detections = outputs[0][0] # First batch, all detections
# Calculate timing
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
fps = 1 / inference_time
# Create a copy of the original image for visualization
output_image = image.copy()
# Scale factor for bounding box coordinates
scale_x = original_shape[1] / input_shape[0]
scale_y = original_shape[0] / input_shape[1]
# Draw bounding boxes and labels
for det in detections:
x1, y1, x2, y2, conf, class_id = det[:6]
if conf < 0.3: # Confidence threshold
continue
# Convert to original image coordinates
x1, x2 = int(x1 * scale_x), int(x2 * scale_x)
y1, y2 = int(y1 * scale_y), int(y2 * scale_y)
class_id = int(class_id)
# Draw rectangle and label
color = tuple(map(int, colors[class_id]))
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
label = f"Class {class_id} {conf:.2f}"
cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Display FPS
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return output_image
# Gradio Interface
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("# **Optimized YOLOv5 Object Detection** πŸš€")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Detect Objects", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True
)
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
demo.launch()