Spaces:
Running
Running
import torch | |
import numpy as np | |
import gradio as gr | |
import cv2 | |
import time | |
import os | |
from pathlib import Path | |
# Create cache directory for models if it doesn't exist | |
os.makedirs("models", exist_ok=True) | |
# Check device availability - Hugging Face Spaces often provides GPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load YOLOv5x model with caching for faster startup | |
model_path = Path("models/yolov5x.pt") | |
if model_path.exists(): | |
print(f"Loading model from cache: {model_path}") | |
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, | |
source="local", path=str(model_path)).to(device) | |
else: | |
print("Downloading YOLOv5x model and caching...") | |
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device) | |
# Cache the model for faster startup next time | |
torch.save(model.state_dict(), model_path) | |
# Optimization configurations | |
model.conf = 0.3 # Confidence threshold of 0.3 as specified | |
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified | |
model.classes = None # Detect all 80+ COCO classes | |
# Optimize for GPU if available | |
if device.type == "cuda": | |
# Use mixed precision for performance boost | |
model.half() | |
else: | |
# On CPU, optimize operations | |
torch.set_num_threads(os.cpu_count()) | |
# Set model to evaluation mode for inference | |
model.eval() | |
# Assign fixed colors to each class for consistent visualization | |
np.random.seed(42) # For reproducible colors | |
# Generate more attractive, vibrant colors | |
colors = [] | |
for i in range(len(model.names)): | |
# Use HSV color space for more vibrant colors | |
hue = i / len(model.names) | |
# Full saturation and value for vivid colors | |
saturation = 0.9 | |
value = 1.0 | |
# Convert HSV to RGB | |
h = hue * 360 | |
s = saturation | |
v = value | |
c = v * s | |
x = c * (1 - abs((h / 60) % 2 - 1)) | |
m = v - c | |
if h < 60: | |
r, g, b = c, x, 0 | |
elif h < 120: | |
r, g, b = x, c, 0 | |
elif h < 180: | |
r, g, b = 0, c, x | |
elif h < 240: | |
r, g, b = 0, x, c | |
elif h < 300: | |
r, g, b = x, 0, c | |
else: | |
r, g, b = c, 0, x | |
r, g, b = (r + m) * 255, (g + m) * 255, (b + m) * 255 | |
colors.append([int(b), int(g), int(r)]) # OpenCV uses BGR | |
# Track performance metrics | |
total_inference_time = 0 | |
inference_count = 0 | |
def detect_objects(image): | |
global total_inference_time, inference_count | |
if image is None: | |
return None | |
start_time = time.time() | |
# Create a copy for drawing results | |
output_image = image.copy() | |
# Fixed input size for optimal processing | |
input_size = 640 | |
# Perform inference with no gradient calculation | |
with torch.no_grad(): | |
# Convert image to tensor for faster processing | |
results = model(image, size=input_size) | |
# Record inference time (model processing only) | |
inference_time = time.time() - start_time | |
total_inference_time += inference_time | |
inference_count += 1 | |
avg_inference_time = total_inference_time / inference_count | |
# Extract detections from first (and only) image | |
detections = results.pred[0].cpu().numpy() | |
for *xyxy, conf, cls in detections: | |
x1, y1, x2, y2 = map(int, xyxy) | |
class_id = int(cls) | |
color = colors[class_id] | |
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3) | |
label = f"{model.names[class_id]} {conf:.2f}" | |
font_scale = 0.7 | |
font_thickness = 2 | |
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness) | |
alpha = 0.7 | |
overlay = output_image.copy() | |
cv2.rectangle(overlay, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1) | |
output_image = cv2.addWeighted(overlay, alpha, output_image, 1 - alpha, 0) | |
cv2.putText(output_image, label, (x1 + 5, y1 - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), font_thickness + 1) | |
cv2.putText(output_image, label, (x1 + 5, y1 - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness) | |
# Calculate FPS | |
fps = 1 / inference_time | |
h, w = output_image.shape[:2] | |
overlay = output_image.copy() | |
fps_bg_height = 90 | |
fps_bg_width = 200 | |
fps_bg_corner = 15 | |
for i in range(fps_bg_height): | |
alpha = 0.8 - (i / fps_bg_height * 0.3) | |
color_value = int(220 * (1 - i / fps_bg_height)) | |
cv2.rectangle(overlay, | |
(10, 10 + i), | |
(fps_bg_width, 10 + i), | |
(40, color_value, 40), | |
-1) | |
cv2.addWeighted(overlay, 0.8, output_image, 0.2, 0, output_image, | |
dst=output_image[10:10+fps_bg_height, 10:10+fps_bg_width]) | |
cv2.rectangle(output_image, | |
(10, 10), | |
(fps_bg_width, 10 + fps_bg_height), | |
(255, 255, 255), | |
2, | |
cv2.LINE_AA) | |
cv2.putText(output_image, "Performance", (20, 35), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) | |
cv2.putText(output_image, f"Current: {fps:.1f} FPS", (20, 65), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) | |
cv2.putText(output_image, f"Average: {1/avg_inference_time:.1f} FPS", (20, 90), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) | |
return output_image | |
# Define example images - these will be stored in the same directory as this script | |
example_images = [ | |
"spring_street_after.jpg", | |
"pexels-hikaique-109919.jpg" | |
] | |
# Make sure example directory exists | |
os.makedirs("examples", exist_ok=True) | |
# Create Gradio interface - optimized for Hugging Face Spaces | |
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo: | |
gr.Markdown(""" | |
# Optimized YOLOv5 Object Detection | |
This system utilizes YOLOv5 to detect 80+ object types from the COCO dataset. | |
**Performance Features:** | |
- Processing speed: Optimized for 30+ FPS at 640x640 resolution | |
- Confidence threshold: 0.3 | |
- IoU threshold: 0.3 | |
Upload an image, then click Submit to see the detections! | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
with gr.Row(): | |
clear_button = gr.Button("Clear", size="sm") | |
submit_button = gr.Button("Submit", variant="primary", size="lg") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Detected Objects", type="numpy") | |
gr.Examples( | |
examples=example_images, | |
inputs=input_image, | |
outputs=output_image, | |
fn=detect_objects, | |
cache_examples=True # Cache for faster response | |
) | |
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image) | |
clear_button.click( | |
fn=lambda: (None, None), | |
outputs=[input_image, output_image], | |
queue=False | |
).then( | |
fn=detect_objects, | |
inputs=input_image, | |
outputs=output_image | |
) | |
# Launch for Hugging Face Spaces | |
demo.launch() |