Aumkeshchy2003's picture
Update app.py
6fb7418 verified
raw
history blame
7.37 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
# Create cache directory for models if it doesn't exist
os.makedirs("models", exist_ok=True)
# Check device availability - Hugging Face Spaces often provides GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5x model with caching for faster startup
model_path = Path("models/yolov5x.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True,
source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5x model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
# Cache the model for faster startup next time
torch.save(model.state_dict(), model_path)
# Optimization configurations
model.conf = 0.3 # Confidence threshold of 0.3 as specified
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
model.classes = None # Detect all 80+ COCO classes
# Optimize for GPU if available
if device.type == "cuda":
# Use mixed precision for performance boost
model.half()
else:
# On CPU, optimize operations
torch.set_num_threads(os.cpu_count())
# Set model to evaluation mode for inference
model.eval()
# Assign fixed colors to each class for consistent visualization
np.random.seed(42) # For reproducible colors
# Generate more attractive, vibrant colors
colors = []
for i in range(len(model.names)):
# Use HSV color space for more vibrant colors
hue = i / len(model.names)
# Full saturation and value for vivid colors
saturation = 0.9
value = 1.0
# Convert HSV to RGB
h = hue * 360
s = saturation
v = value
c = v * s
x = c * (1 - abs((h / 60) % 2 - 1))
m = v - c
if h < 60:
r, g, b = c, x, 0
elif h < 120:
r, g, b = x, c, 0
elif h < 180:
r, g, b = 0, c, x
elif h < 240:
r, g, b = 0, x, c
elif h < 300:
r, g, b = x, 0, c
else:
r, g, b = c, 0, x
r, g, b = (r + m) * 255, (g + m) * 255, (b + m) * 255
colors.append([int(b), int(g), int(r)]) # OpenCV uses BGR
# Track performance metrics
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
# Create a copy for drawing results
output_image = image.copy()
# Fixed input size for optimal processing
input_size = 640
# Perform inference with no gradient calculation
with torch.no_grad():
# Convert image to tensor for faster processing
results = model(image, size=input_size)
# Record inference time (model processing only)
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
# Extract detections from first (and only) image
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id]
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3)
label = f"{model.names[class_id]} {conf:.2f}"
font_scale = 0.7
font_thickness = 2
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
alpha = 0.7
overlay = output_image.copy()
cv2.rectangle(overlay, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
output_image = cv2.addWeighted(overlay, alpha, output_image, 1 - alpha, 0)
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), font_thickness + 1)
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
# Calculate FPS
fps = 1 / inference_time
h, w = output_image.shape[:2]
overlay = output_image.copy()
fps_bg_height = 90
fps_bg_width = 200
fps_bg_corner = 15
for i in range(fps_bg_height):
alpha = 0.8 - (i / fps_bg_height * 0.3)
color_value = int(220 * (1 - i / fps_bg_height))
cv2.rectangle(overlay,
(10, 10 + i),
(fps_bg_width, 10 + i),
(40, color_value, 40),
-1)
cv2.addWeighted(overlay, 0.8, output_image, 0.2, 0, output_image,
dst=output_image[10:10+fps_bg_height, 10:10+fps_bg_width])
cv2.rectangle(output_image,
(10, 10),
(fps_bg_width, 10 + fps_bg_height),
(255, 255, 255),
2,
cv2.LINE_AA)
cv2.putText(output_image, "Performance", (20, 35),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(output_image, f"Current: {fps:.1f} FPS", (20, 65),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(output_image, f"Average: {1/avg_inference_time:.1f} FPS", (20, 90),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
return output_image
# Define example images - these will be stored in the same directory as this script
example_images = [
"spring_street_after.jpg",
"pexels-hikaique-109919.jpg"
]
# Make sure example directory exists
os.makedirs("examples", exist_ok=True)
# Create Gradio interface - optimized for Hugging Face Spaces
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("""
# Optimized YOLOv5 Object Detection
This system utilizes YOLOv5 to detect 80+ object types from the COCO dataset.
**Performance Features:**
- Processing speed: Optimized for 30+ FPS at 640x640 resolution
- Confidence threshold: 0.3
- IoU threshold: 0.3
Upload an image, then click Submit to see the detections!
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
clear_button = gr.Button("Clear", size="sm")
submit_button = gr.Button("Submit", variant="primary", size="lg")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True # Cache for faster response
)
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_button.click(
fn=lambda: (None, None),
outputs=[input_image, output_image],
queue=False
).then(
fn=detect_objects,
inputs=input_image,
outputs=output_image
)
# Launch for Hugging Face Spaces
demo.launch()