Spaces:
Running
Running
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| import cv2 | |
| import time | |
| import os | |
| from pathlib import Path | |
| from PIL import Image | |
| # Create cache directory for models | |
| os.makedirs("models", exist_ok=True) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| # Load YOLOv5 Nano model | |
| model_path = Path("models/yolov5n.pt") | |
| if model_path.exists(): | |
| print(f"Loading model from cache: {model_path}") | |
| model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device) | |
| else: | |
| print("Downloading YOLOv5n model and caching...") | |
| model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device) | |
| torch.save(model.state_dict(), model_path) | |
| # Optimize model for speed | |
| model.conf = 0.3 | |
| model.iou = 0.3 | |
| model.classes = None | |
| if device.type == "cuda": | |
| model.half() | |
| else: | |
| torch.set_num_threads(os.cpu_count()) | |
| model.eval() | |
| # Pre-generate colors for bounding boxes | |
| np.random.seed(42) | |
| colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8) | |
| def process_video(video_path): | |
| # Check if video_path is None or empty | |
| if video_path is None or video_path == "": | |
| return None | |
| # Handle the case when Gradio passes a tuple (file, None) | |
| if isinstance(video_path, tuple) and len(video_path) >= 1: | |
| video_path = video_path[0] | |
| cap = cv2.VideoCapture(video_path) | |
| if not cap.isOpened(): | |
| return "Error: Could not open video file." | |
| frame_width = int(cap.get(3)) | |
| frame_height = int(cap.get(4)) | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| output_path = "output_video.mp4" | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) | |
| total_frames = 0 | |
| total_time = 0 | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| start_time = time.time() | |
| # Convert frame for YOLOv5 | |
| img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| results = model(img, size=640) | |
| inference_time = time.time() - start_time | |
| total_time += inference_time | |
| total_frames += 1 | |
| detections = results.xyxy[0].cpu().numpy() | |
| for *xyxy, conf, cls in detections: | |
| x1, y1, x2, y2 = map(int, xyxy) | |
| class_id = int(cls) | |
| color = colors[class_id].tolist() | |
| cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA) | |
| label = f"{model.names[class_id]} {conf:.2f}" | |
| cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2) | |
| # Calculate FPS | |
| avg_fps = total_frames / total_time if total_time > 0 else 0 | |
| cv2.putText(frame, f"FPS: {avg_fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
| out.write(frame) | |
| cap.release() | |
| out.release() | |
| return output_path | |
| def process_image(image): | |
| img = np.array(image) | |
| results = model(img, size=640) | |
| detections = results.pred[0].cpu().numpy() | |
| for *xyxy, conf, cls in detections: | |
| x1, y1, x2, y2 = map(int, xyxy) | |
| class_id = int(cls) | |
| color = colors[class_id].tolist() | |
| cv2.rectangle(img, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA) | |
| label = f"{model.names[class_id]} {conf:.2f}" | |
| cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2) | |
| return Image.fromarray(img) | |
| css = """ | |
| #title { | |
| text-align: center; | |
| color: #2C3E50; | |
| font-size: 2.5rem; | |
| margin: 1.5rem 0; | |
| text-shadow: 1px 1px 2px rgba(0,0,0,0.1); | |
| } | |
| .gradio-container { | |
| background-color: #F5F7FA; | |
| } | |
| .tab-item { | |
| background-color: white; | |
| border-radius: 10px; | |
| padding: 20px; | |
| box-shadow: 0 4px 6px rgba(0,0,0,0.1); | |
| margin: 10px; | |
| } | |
| .button-row { | |
| display: flex; | |
| justify-content: space-around; | |
| margin: 1rem 0; | |
| } | |
| #video-process-btn, #submit-btn { | |
| background-color: #3498DB; | |
| border: none; | |
| } | |
| #clear-btn { | |
| background-color: #E74C3C; | |
| border: none; | |
| } | |
| .output-container { | |
| margin-top: 1.5rem; | |
| border: 2px dashed #3498DB; | |
| border-radius: 10px; | |
| padding: 10px; | |
| } | |
| .footer { | |
| text-align: center; | |
| margin-top: 2rem; | |
| font-size: 0.9rem; | |
| color: #7F8C8D; | |
| } | |
| """ | |
| with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as demo: | |
| gr.Markdown("""# YOLOv5 Object Detection""", elem_id="title") | |
| with gr.Tabs(): | |
| with gr.TabItem("Video Detection", elem_classes="tab-item"): | |
| with gr.Row(): | |
| video_input = gr.Video( | |
| label="Upload Video", | |
| interactive=True, | |
| elem_id="video-input" | |
| ) | |
| with gr.Row(elem_classes="button-row"): | |
| process_button = gr.Button( | |
| "Process Video", | |
| variant="primary", | |
| elem_id="video-process-btn" | |
| ) | |
| with gr.Row(elem_classes="output-container"): | |
| video_output = gr.Video( | |
| label="Processed Video", | |
| elem_id="video-output" | |
| ) | |
| process_button.click( | |
| fn=process_video, | |
| inputs=video_input, | |
| outputs=video_output | |
| ) | |
| with gr.TabItem("Image Detection", elem_classes="tab-item"): | |
| with gr.Row(): | |
| image_input = gr.Image( | |
| type="pil", | |
| label="Upload Image", | |
| interactive=True | |
| ) | |
| with gr.Row(elem_classes="button-row"): | |
| clear_button = gr.Button( | |
| "Clear", | |
| variant="secondary", | |
| elem_id="clear-btn" | |
| ) | |
| submit_button = gr.Button( | |
| "Detect Objects", | |
| variant="primary", | |
| elem_id="submit-btn" | |
| ) | |
| with gr.Row(elem_classes="output-container"): | |
| image_output = gr.Image( | |
| label="Detected Objects", | |
| elem_id="image-output" | |
| ) | |
| clear_button.click( | |
| fn=lambda: None, | |
| inputs=None, | |
| outputs=image_output | |
| ) | |
| submit_button.click( | |
| fn=process_image, | |
| inputs=image_input, | |
| outputs=image_output | |
| ) | |
| gr.Markdown(""" | |
| ### Powered by YOLOv5. | |
| This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency. | |
| """, elem_classes="footer") | |
| demo.launch() |