Aumkeshchy2003's picture
Update app.py
ab96246 verified
raw
history blame
1.73 kB
import torch
import numpy as np
import gradio as gr
from PIL import Image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
model.conf = 0.5
if device.type == 'cuda':
model.half()
def process_frame(image):
if image is None:
print("No image received!")
return None
try:
print("Processing frame...")
image_pil = Image.fromarray(image)
with torch.no_grad():
results = model(image_pil)
rendered_images = results.render()
processed_image = np.array(rendered_images[0]) if rendered_images else image
print("Frame processed successfully!")
return processed_image
except Exception as e:
print(f"Processing error: {e}")
return image
with gr.Blocks(title="Real-Time Object Detection") as app:
gr.Markdown("# Real-Time Object Detection with Dual Input")
with gr.Tabs():
with gr.TabItem("πŸ“· Live Camera"):
with gr.Row():
webcam_input = gr.Image(source="webcam", streaming=True, label="Live Feed") # βœ… FIXED
live_output = gr.Image(label="Processed Feed")
webcam_input.stream(process_frame, inputs=webcam_input, outputs=live_output) # βœ… FIXED
with gr.TabItem("πŸ–ΌοΈ Image Upload"):
with gr.Row():
upload_input = gr.Image(type="numpy", label="Upload Image")
upload_output = gr.Image(label="Detection Result")
upload_input.change(process_frame, upload_input, upload_output)
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)