Aumkeshchy2003 commited on
Commit
0152e0c
·
verified ·
1 Parent(s): 1832ba3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -13
app.py CHANGED
@@ -1,24 +1,51 @@
1
  import torch
2
  import numpy as np
3
  import gradio as gr
 
 
4
  from PIL import Image
5
 
6
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
7
 
8
- model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device)
 
9
 
10
- if device.type == 'cuda':
11
- model.half()
 
 
 
 
 
 
12
 
13
  def detect_objects(image):
 
 
14
  image_pil = Image.fromarray(image)
15
-
16
  with torch.no_grad():
17
- results = model(image_pil)
18
-
19
- rendered_images = results.render()
20
-
21
- return np.array(rendered_images[0]) if rendered_images else image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  # Gradio interface
24
  iface = gr.Interface(
@@ -26,9 +53,9 @@ iface = gr.Interface(
26
  inputs=gr.Image(type="numpy", label="Upload Image"),
27
  outputs=gr.Image(type="numpy", label="Detected Objects"),
28
  title="Object Detection with YOLOv5",
29
- description="Use webcam or upload an image to detect objects.",
30
  allow_flagging="never",
31
- examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
32
  )
33
 
34
- iface.launch()
 
1
  import torch
2
  import numpy as np
3
  import gradio as gr
4
+ import cv2
5
+ import time
6
  from PIL import Image
7
 
8
+ # Check device availability
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
 
11
+ # Load YOLOv5 model
12
+ model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
13
 
14
+ if device.type == "cuda":
15
+ model.half() # Use FP16 for performance boost
16
+
17
+ # Print available object classes
18
+ print(f"Model loaded with {len(model.names)} classes: {model.names}")
19
+
20
+ # Assign random colors to each class for bounding boxes
21
+ colors = {i: [int(c) for c in np.random.randint(0, 255, 3)] for i in range(len(model.names))}
22
 
23
  def detect_objects(image):
24
+ start_time = time.time() # Start FPS measurement
25
+
26
  image_pil = Image.fromarray(image)
27
+
28
  with torch.no_grad():
29
+ results = model(image_pil, conf=0.3, iou=0.3) # Apply NMS with IoU = 0.3
30
+
31
+ rendered_images = results.render() # Get rendered image with default YOLOv5 visualization
32
+
33
+ # Get bounding boxes and draw color-coded boxes
34
+ img_cv = np.array(rendered_images[0]) if rendered_images else image
35
+
36
+ for det in results.xyxy[0]: # Bounding box format: x1, y1, x2, y2, conf, cls
37
+ x1, y1, x2, y2, conf, cls = map(int, det[:6])
38
+ label = f"{model.names[cls]}: {conf:.2f}"
39
+
40
+ cv2.rectangle(img_cv, (x1, y1), (x2, y2), colors[cls], 2)
41
+ cv2.putText(img_cv, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[cls], 2)
42
+
43
+ # FPS Calculation
44
+ end_time = time.time()
45
+ fps = 1 / (end_time - start_time)
46
+ print(f"FPS: {fps:.2f}")
47
+
48
+ return img_cv
49
 
50
  # Gradio interface
51
  iface = gr.Interface(
 
53
  inputs=gr.Image(type="numpy", label="Upload Image"),
54
  outputs=gr.Image(type="numpy", label="Detected Objects"),
55
  title="Object Detection with YOLOv5",
56
+ description="Use webcam or upload an image to detect objects. Optimized for speed and accuracy!",
57
  allow_flagging="never",
58
+ examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"],
59
  )
60
 
61
+ iface.launch()