Aumkeshchy2003 commited on
Commit
247b0af
·
verified ·
1 Parent(s): 6ade533

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -21
app.py CHANGED
@@ -44,18 +44,6 @@ colors = np.random.uniform(0, 255, size=(len(model.names), 3))
44
  total_inference_time = 0
45
  inference_count = 0
46
 
47
- def preprocess_image(image):
48
- """Prepares image for YOLOv5 detection while maintaining aspect ratio."""
49
- h, w, _ = image.shape
50
- scale = 640 / max(h, w)
51
- new_w, new_h = int(w * scale), int(h * scale)
52
-
53
- resized_image = cv2.resize(image, (new_w, new_h))
54
- padded_image = np.full((640, 640, 3), 114, dtype=np.uint8) # Gray padding
55
- padded_image[:new_h, :new_w] = resized_image
56
-
57
- return cv2.cvtColor(padded_image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
58
-
59
  def detect_objects(image):
60
  global total_inference_time, inference_count
61
 
@@ -64,11 +52,14 @@ def detect_objects(image):
64
 
65
  start_time = time.time()
66
 
67
- # Preprocess image
68
- image = preprocess_image(image)
 
 
 
69
 
70
  with torch.inference_mode(): # Faster than torch.no_grad()
71
- results = model(image, size=640)
72
 
73
  inference_time = time.time() - start_time
74
  total_inference_time += inference_time
@@ -85,17 +76,17 @@ def detect_objects(image):
85
  color = colors[class_id].tolist()
86
 
87
  # Keep bounding boxes within image bounds
88
- x1, y1, x2, y2 = max(0, x1), max(0, y1), min(640, x2), min(640, y2)
89
 
90
  # Draw bounding box
91
  cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
92
 
93
  label = f"{model.names[class_id]} {conf:.2f}"
94
  font_scale, font_thickness = 0.9, 2
95
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
96
 
97
  # Label background
98
- cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
99
  cv2.putText(output_image, label, (x1 + 5, y1 - 5),
100
  cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
101
 
@@ -116,10 +107,10 @@ def detect_objects(image):
116
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
117
  os.makedirs("examples", exist_ok=True)
118
 
119
- with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
120
  gr.Markdown("""
121
- # Optimized YOLOv5 Object Detection
122
- Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
123
  """)
124
 
125
  with gr.Row():
 
44
  total_inference_time = 0
45
  inference_count = 0
46
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  def detect_objects(image):
48
  global total_inference_time, inference_count
49
 
 
52
 
53
  start_time = time.time()
54
 
55
+ # Convert image to BGR format for OpenCV
56
+ image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
57
+
58
+ # Get image dimensions
59
+ h, w, _ = image.shape
60
 
61
  with torch.inference_mode(): # Faster than torch.no_grad()
62
+ results = model(image_bgr)
63
 
64
  inference_time = time.time() - start_time
65
  total_inference_time += inference_time
 
76
  color = colors[class_id].tolist()
77
 
78
  # Keep bounding boxes within image bounds
79
+ x1, y1, x2, y2 = max(0, x1), max(0, y1), min(w, x2), min(h, y2)
80
 
81
  # Draw bounding box
82
  cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
83
 
84
  label = f"{model.names[class_id]} {conf:.2f}"
85
  font_scale, font_thickness = 0.9, 2
86
+ (tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
87
 
88
  # Label background
89
+ cv2.rectangle(output_image, (x1, y1 - th - 10), (x1 + tw + 10, y1), color, -1)
90
  cv2.putText(output_image, label, (x1 + 5, y1 - 5),
91
  cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
92
 
 
107
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
108
  os.makedirs("examples", exist_ok=True)
109
 
110
+ with gr.Blocks(title="YOLOv5 Object Detection (High Quality, High FPS)") as demo:
111
  gr.Markdown("""
112
+ # YOLOv5 Object Detection - High Quality & High FPS
113
+ Detects objects with full-resolution output and ultra-fast performance.
114
  """)
115
 
116
  with gr.Row():