Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,15 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
|
8 |
-
# Load
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
-
model =
|
11 |
-
model.to(device)
|
12 |
-
model.eval()
|
13 |
|
14 |
# Load COCO class labels
|
15 |
-
CLASS_NAMES = model.names #
|
16 |
|
17 |
def preprocess_image(image):
|
18 |
image = Image.fromarray(image)
|
@@ -21,23 +18,25 @@ def preprocess_image(image):
|
|
21 |
|
22 |
def detect_objects(image):
|
23 |
image = preprocess_image(image)
|
24 |
-
|
|
|
|
|
25 |
|
26 |
# Convert results to bounding box format
|
27 |
image = np.array(image)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
return image
|
43 |
|
@@ -46,10 +45,10 @@ iface = gr.Interface(
|
|
46 |
fn=detect_objects,
|
47 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
48 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
49 |
-
title="Object Detection",
|
50 |
-
description="Use webcam or
|
51 |
allow_flagging="never",
|
52 |
examples=["spring_street_after.jpg"]
|
53 |
)
|
54 |
|
55 |
-
iface.launch()
|
|
|
|
|
1 |
import torch
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
|
7 |
+
# Load YOLOv5 model from Ultralytics' official repo
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) # Load YOLOv5x model
|
|
|
|
|
10 |
|
11 |
# Load COCO class labels
|
12 |
+
CLASS_NAMES = model.names # YOLOv5's built-in class names
|
13 |
|
14 |
def preprocess_image(image):
|
15 |
image = Image.fromarray(image)
|
|
|
18 |
|
19 |
def detect_objects(image):
|
20 |
image = preprocess_image(image)
|
21 |
+
|
22 |
+
# Run inference using YOLOv5
|
23 |
+
results = model(image)
|
24 |
|
25 |
# Convert results to bounding box format
|
26 |
image = np.array(image)
|
27 |
+
|
28 |
+
for *box, conf, cls in results.xyxy[0]: # YOLOv5 format: [x1, y1, x2, y2, conf, class]
|
29 |
+
x1, y1, x2, y2 = map(int, box)
|
30 |
+
class_name = CLASS_NAMES[int(cls)] # Get class name
|
31 |
+
confidence = conf.item() * 100 # Convert confidence to percentage
|
32 |
|
33 |
+
# Draw a bolder bounding box
|
34 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness
|
35 |
|
36 |
+
# Larger text for class label
|
37 |
+
label = f"{class_name} ({confidence:.1f}%)"
|
38 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
39 |
+
1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text
|
40 |
|
41 |
return image
|
42 |
|
|
|
45 |
fn=detect_objects,
|
46 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
47 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
48 |
+
title="Object Detection with YOLOv5",
|
49 |
+
description="Use webcam or upload an image to detect objects.",
|
50 |
allow_flagging="never",
|
51 |
examples=["spring_street_after.jpg"]
|
52 |
)
|
53 |
|
54 |
+
iface.launch()
|