Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ os.makedirs("models", exist_ok=True)
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
print(f"Using device: {device}")
|
14 |
|
15 |
-
# Load YOLOv5
|
16 |
model_path = Path("models/yolov5n.pt")
|
17 |
if model_path.exists():
|
18 |
print(f"Loading model from cache: {model_path}")
|
@@ -22,54 +22,57 @@ else:
|
|
22 |
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
|
23 |
torch.save(model.state_dict(), model_path)
|
24 |
|
25 |
-
#
|
26 |
-
model.conf = 0.
|
27 |
-
model.iou = 0.
|
28 |
-
model.classes = None
|
29 |
-
|
30 |
if device.type == "cuda":
|
31 |
-
model.half()
|
32 |
else:
|
33 |
torch.set_num_threads(os.cpu_count())
|
34 |
-
|
35 |
model.eval()
|
36 |
|
37 |
-
#
|
38 |
np.random.seed(42)
|
39 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def process_video(video_path):
|
42 |
cap = cv2.VideoCapture(video_path)
|
43 |
-
|
44 |
if not cap.isOpened():
|
45 |
return "Error: Could not open video file."
|
46 |
-
|
47 |
frame_width = int(cap.get(3))
|
48 |
frame_height = int(cap.get(4))
|
49 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
50 |
-
|
51 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
52 |
output_path = "output_video.mp4"
|
53 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
54 |
-
|
55 |
-
total_frames = 0
|
56 |
-
total_time = 0
|
57 |
-
|
58 |
while cap.isOpened():
|
59 |
ret, frame = cap.read()
|
60 |
if not ret:
|
61 |
-
break
|
62 |
-
|
63 |
-
start_time = time.time()
|
64 |
|
65 |
-
# Convert frame for YOLOv5
|
66 |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
67 |
results = model(img, size=640)
|
68 |
-
|
69 |
-
inference_time = time.time() - start_time
|
70 |
-
total_time += inference_time
|
71 |
-
total_frames += 1
|
72 |
-
|
73 |
detections = results.pred[0].cpu().numpy()
|
74 |
|
75 |
for *xyxy, conf, cls in detections:
|
@@ -79,28 +82,27 @@ def process_video(video_path):
|
|
79 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
80 |
label = f"{model.names[class_id]} {conf:.2f}"
|
81 |
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
82 |
-
|
83 |
-
# Calculate FPS
|
84 |
-
avg_fps = total_frames / total_time if total_time > 0 else 0
|
85 |
-
cv2.putText(frame, f"FPS: {avg_fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
86 |
-
|
87 |
out.write(frame)
|
88 |
-
|
89 |
cap.release()
|
90 |
out.release()
|
91 |
-
|
92 |
return output_path
|
93 |
|
94 |
# Gradio Interface
|
95 |
-
with gr.Blocks(title="
|
96 |
-
gr.Markdown("#
|
97 |
-
|
98 |
-
with gr.
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
print(f"Using device: {device}")
|
14 |
|
15 |
+
# Load YOLOv5 Model
|
16 |
model_path = Path("models/yolov5n.pt")
|
17 |
if model_path.exists():
|
18 |
print(f"Loading model from cache: {model_path}")
|
|
|
22 |
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
|
23 |
torch.save(model.state_dict(), model_path)
|
24 |
|
25 |
+
# Configure model
|
26 |
+
model.conf = 0.5
|
27 |
+
model.iou = 0.5
|
28 |
+
model.classes = None
|
|
|
29 |
if device.type == "cuda":
|
30 |
+
model.half()
|
31 |
else:
|
32 |
torch.set_num_threads(os.cpu_count())
|
|
|
33 |
model.eval()
|
34 |
|
35 |
+
# Generate colors for bounding boxes
|
36 |
np.random.seed(42)
|
37 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
38 |
|
39 |
+
def detect_objects(image):
|
40 |
+
if image is None:
|
41 |
+
return None
|
42 |
+
|
43 |
+
output_image = image.copy()
|
44 |
+
results = model(image, size=640)
|
45 |
+
detections = results.pred[0].cpu().numpy()
|
46 |
+
|
47 |
+
for *xyxy, conf, cls in detections:
|
48 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
49 |
+
class_id = int(cls)
|
50 |
+
color = colors[class_id].tolist()
|
51 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
52 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
53 |
+
cv2.putText(output_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
54 |
+
|
55 |
+
return output_image
|
56 |
+
|
57 |
def process_video(video_path):
|
58 |
cap = cv2.VideoCapture(video_path)
|
|
|
59 |
if not cap.isOpened():
|
60 |
return "Error: Could not open video file."
|
61 |
+
|
62 |
frame_width = int(cap.get(3))
|
63 |
frame_height = int(cap.get(4))
|
64 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
65 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
66 |
output_path = "output_video.mp4"
|
67 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
68 |
+
|
|
|
|
|
|
|
69 |
while cap.isOpened():
|
70 |
ret, frame = cap.read()
|
71 |
if not ret:
|
72 |
+
break
|
|
|
|
|
73 |
|
|
|
74 |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
75 |
results = model(img, size=640)
|
|
|
|
|
|
|
|
|
|
|
76 |
detections = results.pred[0].cpu().numpy()
|
77 |
|
78 |
for *xyxy, conf, cls in detections:
|
|
|
82 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
83 |
label = f"{model.names[class_id]} {conf:.2f}"
|
84 |
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
85 |
+
|
|
|
|
|
|
|
|
|
86 |
out.write(frame)
|
87 |
+
|
88 |
cap.release()
|
89 |
out.release()
|
|
|
90 |
return output_path
|
91 |
|
92 |
# Gradio Interface
|
93 |
+
with gr.Blocks(title="YOLOv5 Object Detection") as demo:
|
94 |
+
gr.Markdown("# YOLOv5 Object Detection (Image & Video)")
|
95 |
+
|
96 |
+
with gr.Tab("Image Detection"):
|
97 |
+
img_input = gr.Image(label="Upload Image", type="numpy")
|
98 |
+
img_output = gr.Image(label="Detected Objects", type="numpy")
|
99 |
+
img_submit = gr.Button("Detect Objects")
|
100 |
+
img_submit.click(fn=detect_objects, inputs=img_input, outputs=img_output)
|
101 |
+
|
102 |
+
with gr.Tab("Video Detection"):
|
103 |
+
vid_input = gr.Video(label="Upload Video")
|
104 |
+
vid_output = gr.Video(label="Processed Video")
|
105 |
+
vid_submit = gr.Button("Process Video")
|
106 |
+
vid_submit.click(fn=process_video, inputs=vid_input, outputs=vid_output)
|
107 |
+
|
108 |
+
demo.launch()
|