Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from ultralytics import YOLO
|
|
6 |
import threading
|
7 |
import time
|
8 |
|
9 |
-
# Load YOLOv5 model
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model = YOLO("yolov5s.pt").to(device)
|
12 |
|
@@ -16,42 +16,46 @@ colors = np.random.randint(0, 255, size=(num_classes, 3), dtype=np.uint8)
|
|
16 |
|
17 |
def detect_objects(image):
|
18 |
"""Detect objects in an uploaded image with different bounding box colors."""
|
19 |
-
|
|
|
20 |
detections = results[0].boxes.data.cpu().numpy() # Get detections
|
21 |
|
22 |
for box in detections:
|
23 |
-
x1, y1, x2, y2, conf, cls =
|
|
|
24 |
label = f"{model.names[cls]} {conf:.2f}"
|
25 |
-
color = tuple(map(int, colors[cls])) # Assign unique color
|
26 |
|
27 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
28 |
-
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
29 |
|
30 |
-
return image
|
31 |
|
32 |
# Real-time webcam processing
|
33 |
-
cap = cv2.VideoCapture(0)
|
34 |
frame = None
|
35 |
lock = threading.Lock()
|
36 |
|
37 |
def process_webcam():
|
38 |
"""Continuously capture and process frames from the webcam."""
|
39 |
global frame
|
40 |
-
while
|
41 |
ret, img = cap.read()
|
42 |
if not ret:
|
43 |
continue
|
44 |
|
45 |
-
|
|
|
46 |
detections = results[0].boxes.data.cpu().numpy()
|
47 |
|
48 |
for box in detections:
|
49 |
-
x1, y1, x2, y2, conf, cls =
|
|
|
50 |
label = f"{model.names[cls]} {conf:.2f}"
|
51 |
color = tuple(map(int, colors[cls])) # Assign unique color
|
52 |
|
53 |
-
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
54 |
-
cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
55 |
|
56 |
with lock:
|
57 |
frame = img
|
@@ -71,9 +75,12 @@ with gr.Blocks() as demo:
|
|
71 |
with gr.Tabs():
|
72 |
with gr.Tab("Real-Time Webcam"):
|
73 |
webcam_output = gr.Image(label="Live Webcam Feed")
|
|
|
74 |
def update_webcam():
|
75 |
while True:
|
76 |
-
|
|
|
|
|
77 |
time.sleep(1/30) # ~30 FPS
|
78 |
|
79 |
threading.Thread(target=update_webcam, daemon=True).start()
|
|
|
6 |
import threading
|
7 |
import time
|
8 |
|
9 |
+
# Load YOLOv5 model
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model = YOLO("yolov5s.pt").to(device)
|
12 |
|
|
|
16 |
|
17 |
def detect_objects(image):
|
18 |
"""Detect objects in an uploaded image with different bounding box colors."""
|
19 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
|
20 |
+
results = model.predict(image) # Explicitly call predict
|
21 |
detections = results[0].boxes.data.cpu().numpy() # Get detections
|
22 |
|
23 |
for box in detections:
|
24 |
+
x1, y1, x2, y2, conf, cls = box[:6]
|
25 |
+
cls = int(cls) # Convert class to int
|
26 |
label = f"{model.names[cls]} {conf:.2f}"
|
27 |
+
color = tuple(map(int, colors[cls])) # Assign unique color
|
28 |
|
29 |
+
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
30 |
+
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
31 |
|
32 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
|
33 |
|
34 |
# Real-time webcam processing
|
35 |
+
cap = cv2.VideoCapture(0)
|
36 |
frame = None
|
37 |
lock = threading.Lock()
|
38 |
|
39 |
def process_webcam():
|
40 |
"""Continuously capture and process frames from the webcam."""
|
41 |
global frame
|
42 |
+
while cap.isOpened():
|
43 |
ret, img = cap.read()
|
44 |
if not ret:
|
45 |
continue
|
46 |
|
47 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
|
48 |
+
results = model.predict(img) # Explicitly call predict
|
49 |
detections = results[0].boxes.data.cpu().numpy()
|
50 |
|
51 |
for box in detections:
|
52 |
+
x1, y1, x2, y2, conf, cls = box[:6]
|
53 |
+
cls = int(cls) # Convert class to int
|
54 |
label = f"{model.names[cls]} {conf:.2f}"
|
55 |
color = tuple(map(int, colors[cls])) # Assign unique color
|
56 |
|
57 |
+
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
58 |
+
cv2.putText(img, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
59 |
|
60 |
with lock:
|
61 |
frame = img
|
|
|
75 |
with gr.Tabs():
|
76 |
with gr.Tab("Real-Time Webcam"):
|
77 |
webcam_output = gr.Image(label="Live Webcam Feed")
|
78 |
+
|
79 |
def update_webcam():
|
80 |
while True:
|
81 |
+
with lock:
|
82 |
+
img = frame if frame is not None else np.zeros((480, 640, 3), dtype=np.uint8)
|
83 |
+
webcam_output.update(img)
|
84 |
time.sleep(1/30) # ~30 FPS
|
85 |
|
86 |
threading.Thread(target=update_webcam, daemon=True).start()
|