Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,49 +2,86 @@ import torch
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
|
|
5 |
|
|
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
7 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
8 |
|
|
|
9 |
model.conf = 0.5
|
10 |
if device.type == 'cuda':
|
11 |
model.half()
|
12 |
|
13 |
-
def process_frame(
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
return None
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
print("Processing frame...")
|
20 |
-
image_pil = Image.fromarray(
|
21 |
|
22 |
with torch.no_grad():
|
23 |
results = model(image_pil)
|
24 |
|
25 |
rendered_images = results.render()
|
26 |
-
processed_image = np.array(rendered_images[0]) if rendered_images else
|
27 |
print("Frame processed successfully!")
|
28 |
return processed_image
|
29 |
|
30 |
except Exception as e:
|
31 |
print(f"Processing error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return image
|
33 |
|
|
|
34 |
with gr.Blocks(title="Real-Time Object Detection") as app:
|
35 |
gr.Markdown("# Real-Time Object Detection with Dual Input")
|
36 |
-
|
37 |
with gr.Tabs():
|
|
|
38 |
with gr.TabItem("📷 Live Camera"):
|
39 |
with gr.Row():
|
40 |
-
webcam_input = gr.
|
41 |
live_output = gr.Image(label="Processed Feed")
|
42 |
-
webcam_input.stream(process_frame, inputs=webcam_input, outputs=live_output)
|
43 |
|
|
|
44 |
with gr.TabItem("🖼️ Image Upload"):
|
45 |
with gr.Row():
|
46 |
upload_input = gr.Image(type="numpy", label="Upload Image")
|
|
|
47 |
upload_output = gr.Image(label="Detection Result")
|
48 |
-
|
|
|
49 |
|
50 |
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
+
import cv2
|
6 |
|
7 |
+
# Device configuration
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
|
10 |
+
# Load optimized YOLOv5s model
|
11 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
12 |
|
13 |
+
# Set model confidence threshold
|
14 |
model.conf = 0.5
|
15 |
if device.type == 'cuda':
|
16 |
model.half()
|
17 |
|
18 |
+
def process_frame(video):
|
19 |
+
"""Reads a frame from the webcam video stream and applies YOLOv5 detection."""
|
20 |
+
cap = cv2.VideoCapture(video) # Open the webcam stream
|
21 |
+
|
22 |
+
if not cap.isOpened():
|
23 |
+
print("Error: Could not open video stream.")
|
24 |
return None
|
25 |
+
|
26 |
+
ret, frame = cap.read()
|
27 |
+
cap.release()
|
28 |
+
|
29 |
+
if not ret:
|
30 |
+
print("Error: Could not read frame.")
|
31 |
+
return None
|
32 |
+
|
33 |
try:
|
34 |
print("Processing frame...")
|
35 |
+
image_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
36 |
|
37 |
with torch.no_grad():
|
38 |
results = model(image_pil)
|
39 |
|
40 |
rendered_images = results.render()
|
41 |
+
processed_image = np.array(rendered_images[0]) if rendered_images else frame
|
42 |
print("Frame processed successfully!")
|
43 |
return processed_image
|
44 |
|
45 |
except Exception as e:
|
46 |
print(f"Processing error: {e}")
|
47 |
+
return frame
|
48 |
+
|
49 |
+
def process_uploaded_image(image):
|
50 |
+
"""Processes the uploaded image and applies YOLOv5 object detection."""
|
51 |
+
if image is None:
|
52 |
+
return None
|
53 |
+
|
54 |
+
try:
|
55 |
+
image_pil = Image.fromarray(image)
|
56 |
+
with torch.no_grad():
|
57 |
+
results = model(image_pil)
|
58 |
+
|
59 |
+
rendered_images = results.render()
|
60 |
+
return np.array(rendered_images[0]) if rendered_images else image
|
61 |
+
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error processing image: {e}")
|
64 |
return image
|
65 |
|
66 |
+
# Create Gradio UI
|
67 |
with gr.Blocks(title="Real-Time Object Detection") as app:
|
68 |
gr.Markdown("# Real-Time Object Detection with Dual Input")
|
69 |
+
|
70 |
with gr.Tabs():
|
71 |
+
# 📷 Live Webcam Tab
|
72 |
with gr.TabItem("📷 Live Camera"):
|
73 |
with gr.Row():
|
74 |
+
webcam_input = gr.Video(label="Live Feed")
|
75 |
live_output = gr.Image(label="Processed Feed")
|
76 |
+
webcam_input.stream(process_frame, inputs=webcam_input, outputs=live_output)
|
77 |
|
78 |
+
# 🖼️ Image Upload Tab (With Submit Button)
|
79 |
with gr.TabItem("🖼️ Image Upload"):
|
80 |
with gr.Row():
|
81 |
upload_input = gr.Image(type="numpy", label="Upload Image")
|
82 |
+
submit_button = gr.Button("Submit")
|
83 |
upload_output = gr.Image(label="Detection Result")
|
84 |
+
|
85 |
+
submit_button.click(process_uploaded_image, inputs=upload_input, outputs=upload_output)
|
86 |
|
87 |
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|