Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,24 +6,25 @@ from PIL import Image
|
|
6 |
import random
|
7 |
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) # Load YOLOv5x model
|
10 |
|
11 |
-
|
|
|
|
|
12 |
|
|
|
13 |
random.seed(42)
|
14 |
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
|
15 |
|
16 |
def preprocess_image(image):
|
17 |
-
image = Image.fromarray(image)
|
18 |
-
image = image.convert("RGB")
|
19 |
return image
|
20 |
|
21 |
def detect_objects(image):
|
22 |
image = preprocess_image(image)
|
23 |
|
24 |
-
results = model(image)
|
25 |
|
26 |
-
image = np.array(image)
|
27 |
|
28 |
for *box, conf, cls in results.xyxy[0]:
|
29 |
x1, y1, x2, y2 = map(int, box)
|
@@ -33,15 +34,12 @@ def detect_objects(image):
|
|
33 |
color = CLASS_COLORS[class_name]
|
34 |
|
35 |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 4)
|
36 |
-
|
37 |
-
|
38 |
label = f"{class_name} ({confidence:.1f}%)"
|
39 |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
40 |
-
1, color, 3, cv2.LINE_AA)
|
41 |
|
42 |
return image
|
43 |
|
44 |
-
|
45 |
iface = gr.Interface(
|
46 |
fn=detect_objects,
|
47 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
@@ -49,7 +47,7 @@ iface = gr.Interface(
|
|
49 |
title="Object Detection with YOLOv5",
|
50 |
description="Use webcam or upload an image to detect objects.",
|
51 |
allow_flagging="never",
|
52 |
-
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
|
53 |
)
|
54 |
|
55 |
iface.launch()
|
|
|
6 |
import random
|
7 |
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
9 |
|
10 |
+
# Use a smaller model for faster inference
|
11 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
12 |
+
model.eval()
|
13 |
|
14 |
+
CLASS_NAMES = model.names
|
15 |
random.seed(42)
|
16 |
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
|
17 |
|
18 |
def preprocess_image(image):
|
19 |
+
image = Image.fromarray(image).convert("RGB").resize((640, 640))
|
|
|
20 |
return image
|
21 |
|
22 |
def detect_objects(image):
|
23 |
image = preprocess_image(image)
|
24 |
|
25 |
+
results = model([image]) # Batch processing for efficiency
|
26 |
|
27 |
+
image = np.array(image)
|
28 |
|
29 |
for *box, conf, cls in results.xyxy[0]:
|
30 |
x1, y1, x2, y2 = map(int, box)
|
|
|
34 |
color = CLASS_COLORS[class_name]
|
35 |
|
36 |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 4)
|
|
|
|
|
37 |
label = f"{class_name} ({confidence:.1f}%)"
|
38 |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
39 |
+
1, color, 3, cv2.LINE_AA)
|
40 |
|
41 |
return image
|
42 |
|
|
|
43 |
iface = gr.Interface(
|
44 |
fn=detect_objects,
|
45 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
|
|
47 |
title="Object Detection with YOLOv5",
|
48 |
description="Use webcam or upload an image to detect objects.",
|
49 |
allow_flagging="never",
|
50 |
+
examples=["examples/spring_street_after.jpg", "examples/pexels-hikaique-109919.jpg"]
|
51 |
)
|
52 |
|
53 |
iface.launch()
|