import torch import cv2 import numpy as np import gradio as gr from PIL import Image # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load YOLOv5x model model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) # Generate distinct colors for each class using HSV color space def generate_distinct_colors(num_classes): colors = {} for i, class_name in enumerate(model.names): # Use HSV to generate evenly distributed hues hue = (i * 255 // num_classes) # Convert HSV to BGR (OpenCV uses BGR) hsv_color = np.uint8([[[hue, 255, 255]]]) bgr_color = cv2.cvtColor(hsv_color, cv2.COLOR_HSV2BGR)[0][0] # Store as tuple for easier use colors[class_name] = tuple(map(int, bgr_color)) return colors # Generate colors once at startup CLASS_COLORS = generate_distinct_colors(len(model.names)) def preprocess_image(image): image = Image.fromarray(image) image = image.convert("RGB") return image def detect_objects(image): image = preprocess_image(image) results = model(image) image = np.array(image) # Process all detections at once detections = results.xyxy[0] for *box, conf, cls in detections: x1, y1, x2, y2 = map(int, box) class_name = model.names[int(cls)] confidence = conf.item() * 100 color = CLASS_COLORS[class_name] # Draw rectangle and label cv2.rectangle(image, (x1, y1), (x2, y2), color, 4) label = f"{class_name} ({confidence:.1f}%)" cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 3, cv2.LINE_AA) return image # Gradio interface iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Image(type="numpy", label="Detected Objects"), title="Object Detection with YOLOv5", description="Use webcam or upload an image to detect objects.", allow_flagging="never", examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"] ) iface.launch()