import torch import cv2 import numpy as np import gradio as gr from PIL import Image import random # Load YOLOv5 model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) # Get class names from the model CLASS_NAMES = model.names # Generate consistent colors for each class random.seed(42) # Fix the seed for consistent colors CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES} def preprocess_image(image): """Convert numpy image to PIL format for YOLOv5 processing.""" image = Image.fromarray(image) image = image.convert("RGB") return image def detect_objects(image): """Detect objects in the image and draw bounding boxes with consistent colors.""" image = preprocess_image(image) results = model([image]) # YOLOv5 inference image = np.array(image) # Convert PIL image back to numpy for OpenCV for *box, conf, cls in results.xyxy[0]: x1, y1, x2, y2 = map(int, box) class_name = CLASS_NAMES[int(cls)] confidence = conf.item() * 100 color = CLASS_COLORS[class_name] # Use pre-generated consistent color # Draw bounding box cv2.rectangle(image, (x1, y1), (x2, y2), color, 4) # Display class label with confidence score label = f"{class_name} ({confidence:.1f}%)" cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 3, cv2.LINE_AA) return image # Create Gradio Interface iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Image(type="numpy", label="Detected Objects"), title="Object Detection with YOLOv5", description="Use webcam or upload an image to detect objects.", allow_flagging="never", examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"] ) # Launch the app iface.launch()