import cv2 import torch from ultralytics import YOLO # Load YOLOv5 model with GPU support if available device = "cuda" if torch.cuda.is_available() else "cpu" model = YOLO("yolov5s.pt").to(device) # You can use yolov5m.pt for better accuracy # Initialize video capture (Webcam) cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FPS, 30) # Ensure 30+ FPS cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # Set width cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # Set height while cap.isOpened(): ret, frame = cap.read() if not ret: break # Perform object detection results = model(frame) # Plot the results (draw bounding boxes) result_img = results[0].plot() # Display the output in a window cv2.imshow("YOLOv5 Live Object Detection", result_img) # Break loop with 'q' key if cv2.waitKey(1) & 0xFF == ord("q"): break # Release resources cap.release() cv2.destroyAllWindows()