import torch import cv2 import numpy as np import gradio as gr from PIL import Image # Load YOLOv5 model from Ultralytics' official repo device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) # Load YOLOv5x model # Load COCO class labels CLASS_NAMES = model.names # YOLOv5's built-in class names def preprocess_image(image): image = Image.fromarray(image) image = image.convert("RGB") return image def detect_objects(image): image = preprocess_image(image) # Run inference using YOLOv5 results = model(image) # Convert results to bounding box format image = np.array(image) for *box, conf, cls in results.xyxy[0]: # YOLOv5 format: [x1, y1, x2, y2, conf, class] x1, y1, x2, y2 = map(int, box) class_name = CLASS_NAMES[int(cls)] # Get class name confidence = conf.item() * 100 # Convert confidence to percentage # Draw a bolder bounding box cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness # Larger text for class label label = f"{class_name} ({confidence:.1f}%)" cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text return image # Gradio UI with Submit button iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=gr.Image(type="numpy", label="Detected Objects"), title="Object Detection with YOLOv5", description="Use webcam or upload an image to detect objects.", allow_flagging="never", examples=["spring_street_after.jpg"] ) iface.launch()