from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse import torch from PIL import Image from torchvision.transforms import functional as F from yolov5.models.yolo import Model from yolov5.utils.general import non_max_suppression app = FastAPI() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) model.eval() def preprocess_image(image): image_tensor = F.to_tensor(image) return image_tensor.unsqueeze(0).to(device) def draw_boxes(outputs, threshold=0.3): boxes = [] for box in outputs: score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item() if score > threshold: boxes.append({ "label": model.names[label], "score": score, "box": [x1, y1, x2, y2] }) return boxes @app.post("/predict/") async def predict(file: UploadFile = File(...)): image = Image.open(file.file) image_tensor = preprocess_image(image) outputs = model(image_tensor) outputs = non_max_suppression(outputs)[0] boxes = draw_boxes(outputs) return JSONResponse(content={"boxes": boxes})