import torch import numpy as np import gradio as gr from PIL import Image import cv2 # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load optimized YOLOv5s model model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) # Set model confidence threshold model.conf = 0.5 if device.type == 'cuda': model.half() def process_frame(video): """Reads a frame from the webcam video stream and applies YOLOv5 detection.""" cap = cv2.VideoCapture(video) # Open the webcam stream if not cap.isOpened(): print("Error: Could not open video stream.") return None ret, frame = cap.read() cap.release() if not ret: print("Error: Could not read frame.") return None try: print("Processing frame...") image_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) with torch.no_grad(): results = model(image_pil) rendered_images = results.render() processed_image = np.array(rendered_images[0]) if rendered_images else frame print("Frame processed successfully!") return processed_image except Exception as e: print(f"Processing error: {e}") return frame def process_uploaded_image(image): """Processes the uploaded image and applies YOLOv5 object detection.""" if image is None: return None try: image_pil = Image.fromarray(image) with torch.no_grad(): results = model(image_pil) rendered_images = results.render() return np.array(rendered_images[0]) if rendered_images else image except Exception as e: print(f"Error processing image: {e}") return image # Create Gradio UI with gr.Blocks(title="Real-Time Object Detection") as app: gr.Markdown("# Real-Time Object Detection with Dual Input") with gr.Tabs(): # 📷 Live Webcam Tab with gr.TabItem("📷 Live Camera"): with gr.Row(): webcam_input = gr.Video(label="Live Feed") live_output = gr.Image(label="Processed Feed") webcam_input.stream(process_frame, inputs=webcam_input, outputs=live_output) # 🖼️ Image Upload Tab (With Submit Button) with gr.TabItem("🖼️ Image Upload"): with gr.Row(): upload_input = gr.Image(type="numpy", label="Upload Image") submit_button = gr.Button("Submit") upload_output = gr.Image(label="Detection Result") submit_button.click(process_uploaded_image, inputs=upload_input, outputs=upload_output) app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)