import torch import numpy as np import gradio as gr from PIL import Image # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load YOLOv5s model model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) # Performance optimizations model.conf = 0.5 # Confidence threshold (adjust for speed/accuracy balance) if device.type == 'cuda': model.half() # FP16 precision def process_frame(image): """Process single frame with error handling""" if image is None: return None try: # Convert numpy array to PIL Image image_pil = Image.fromarray(image) # Perform inference with torch.no_grad(): results = model(image_pil) # Render results rendered_images = results.render() return np.array(rendered_images[0]) if rendered_images else image except Exception as e: print(f"Processing error: {e}") return image with gr.Blocks(title="Real-Time Object Detection") as app: gr.Markdown("# Real-Time Object Detection with Dual Input") gr.Markdown("Supports live webcam streaming and image uploads") with gr.Tabs(): with gr.TabItem("📷 Live Camera"): with gr.Row(): webcam_input = gr.Video(label="Live Feed", streaming=True) live_output = gr.Image(label="Processed Feed", streaming=True) webcam_input.change(process_frame, webcam_input, live_output) with gr.TabItem("🖼️ Image Upload"): with gr.Row(): upload_input = gr.Image(type="numpy", label="Upload Image") upload_output = gr.Image(label="Detection Result") upload_input.change(process_frame, upload_input, upload_output) gr.Markdown("Performance Settings") with gr.Accordion("Advanced Settings", open=False): gr.Slider(minimum=0.1, maximum=0.9, value=0.5, label="Confidence Threshold", interactive=True) gr.Checkbox(label="Enable FP16 Acceleration", value=True) # Configure queue and launch app.queue().launch( server_name="0.0.0.0", server_port=7860, share=False, )