Spaces:
Sleeping
Sleeping
Jordi Catafal
commited on
Commit
·
ebb30ca
1
Parent(s):
5861022
another try
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/app_minimal.cpython-311.pyc +0 -0
- app.py +10 -34
- app_hybrid_backup.py +189 -0
__pycache__/app.cpython-311.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
|
__pycache__/app_minimal.cpython-311.pyc
ADDED
|
Binary file (6.78 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
-
from contextlib import asynccontextmanager
|
| 4 |
from typing import List
|
| 5 |
import torch
|
| 6 |
import uvicorn
|
|
@@ -8,31 +7,11 @@ import uvicorn
|
|
| 8 |
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
| 9 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
| 10 |
|
| 11 |
-
# Global model cache
|
| 12 |
models_cache = {}
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
# Models to load on demand
|
| 17 |
-
ON_DEMAND_MODELS = ["jina", "robertalex", "legal-bert"]
|
| 18 |
-
|
| 19 |
-
@asynccontextmanager
|
| 20 |
-
async def lifespan(app: FastAPI):
|
| 21 |
-
"""Application lifespan handler for startup and shutdown"""
|
| 22 |
-
# Startup - load priority models
|
| 23 |
-
try:
|
| 24 |
-
global models_cache
|
| 25 |
-
print(f"Loading startup models: {STARTUP_MODELS}...")
|
| 26 |
-
models_cache = load_models(STARTUP_MODELS)
|
| 27 |
-
print(f"Startup models loaded successfully: {list(models_cache.keys())}")
|
| 28 |
-
yield
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print(f"Failed to load startup models: {str(e)}")
|
| 31 |
-
# Continue anyway - models can be loaded on demand
|
| 32 |
-
yield
|
| 33 |
-
finally:
|
| 34 |
-
# Shutdown - cleanup resources
|
| 35 |
-
cleanup_memory()
|
| 36 |
|
| 37 |
def ensure_model_loaded(model_name: str):
|
| 38 |
"""Load a specific model on demand if not already loaded"""
|
|
@@ -53,8 +32,7 @@ def ensure_model_loaded(model_name: str):
|
|
| 53 |
app = FastAPI(
|
| 54 |
title="Multilingual & Legal Embedding API",
|
| 55 |
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
| 56 |
-
version="3.0.0"
|
| 57 |
-
lifespan=lifespan
|
| 58 |
)
|
| 59 |
|
| 60 |
# Add CORS middleware to allow cross-origin requests
|
|
@@ -69,18 +47,19 @@ app.add_middleware(
|
|
| 69 |
@app.get("/")
|
| 70 |
async def root():
|
| 71 |
return {
|
| 72 |
-
"message": "Multilingual & Legal Embedding API",
|
| 73 |
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
| 74 |
"status": "running",
|
| 75 |
"docs": "/docs",
|
| 76 |
-
"total_models": 5
|
|
|
|
| 77 |
}
|
| 78 |
|
| 79 |
@app.post("/embed", response_model=EmbeddingResponse)
|
| 80 |
async def create_embeddings(request: EmbeddingRequest):
|
| 81 |
"""Generate embeddings for input texts"""
|
| 82 |
try:
|
| 83 |
-
# Load specific model on demand
|
| 84 |
ensure_model_loaded(request.model)
|
| 85 |
|
| 86 |
if not request.texts:
|
|
@@ -167,18 +146,15 @@ async def list_models():
|
|
| 167 |
@app.get("/health")
|
| 168 |
async def health_check():
|
| 169 |
"""Health check endpoint"""
|
| 170 |
-
startup_models_loaded = all(model in models_cache for model in STARTUP_MODELS)
|
| 171 |
all_models_loaded = len(models_cache) == 5
|
| 172 |
|
| 173 |
return {
|
| 174 |
-
"status": "healthy"
|
| 175 |
-
"startup_models_loaded": startup_models_loaded,
|
| 176 |
"all_models_loaded": all_models_loaded,
|
| 177 |
"available_models": list(models_cache.keys()),
|
| 178 |
-
"startup_models": STARTUP_MODELS,
|
| 179 |
"on_demand_models": ON_DEMAND_MODELS,
|
| 180 |
"models_count": len(models_cache),
|
| 181 |
-
"note":
|
| 182 |
}
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 3 |
from typing import List
|
| 4 |
import torch
|
| 5 |
import uvicorn
|
|
|
|
| 7 |
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
| 8 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
| 9 |
|
| 10 |
+
# Global model cache - completely on-demand loading
|
| 11 |
models_cache = {}
|
| 12 |
|
| 13 |
+
# All models load on demand to test deployment
|
| 14 |
+
ON_DEMAND_MODELS = ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def ensure_model_loaded(model_name: str):
|
| 17 |
"""Load a specific model on demand if not already loaded"""
|
|
|
|
| 32 |
app = FastAPI(
|
| 33 |
title="Multilingual & Legal Embedding API",
|
| 34 |
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
| 35 |
+
version="3.0.0"
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
# Add CORS middleware to allow cross-origin requests
|
|
|
|
| 47 |
@app.get("/")
|
| 48 |
async def root():
|
| 49 |
return {
|
| 50 |
+
"message": "Multilingual & Legal Embedding API - Minimal Version",
|
| 51 |
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
| 52 |
"status": "running",
|
| 53 |
"docs": "/docs",
|
| 54 |
+
"total_models": 5,
|
| 55 |
+
"note": "All models load on first request"
|
| 56 |
}
|
| 57 |
|
| 58 |
@app.post("/embed", response_model=EmbeddingResponse)
|
| 59 |
async def create_embeddings(request: EmbeddingRequest):
|
| 60 |
"""Generate embeddings for input texts"""
|
| 61 |
try:
|
| 62 |
+
# Load specific model on demand
|
| 63 |
ensure_model_loaded(request.model)
|
| 64 |
|
| 65 |
if not request.texts:
|
|
|
|
| 146 |
@app.get("/health")
|
| 147 |
async def health_check():
|
| 148 |
"""Health check endpoint"""
|
|
|
|
| 149 |
all_models_loaded = len(models_cache) == 5
|
| 150 |
|
| 151 |
return {
|
| 152 |
+
"status": "healthy",
|
|
|
|
| 153 |
"all_models_loaded": all_models_loaded,
|
| 154 |
"available_models": list(models_cache.keys()),
|
|
|
|
| 155 |
"on_demand_models": ON_DEMAND_MODELS,
|
| 156 |
"models_count": len(models_cache),
|
| 157 |
+
"note": "All models load on first embedding request - minimal deployment version"
|
| 158 |
}
|
| 159 |
|
| 160 |
if __name__ == "__main__":
|
app_hybrid_backup.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from contextlib import asynccontextmanager
|
| 4 |
+
from typing import List
|
| 5 |
+
import torch
|
| 6 |
+
import uvicorn
|
| 7 |
+
|
| 8 |
+
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
| 9 |
+
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
| 10 |
+
|
| 11 |
+
# Global model cache
|
| 12 |
+
models_cache = {}
|
| 13 |
+
|
| 14 |
+
# Models to load at startup (most frequently used)
|
| 15 |
+
STARTUP_MODELS = ["jina-v3", "roberta-ca"]
|
| 16 |
+
# Models to load on demand
|
| 17 |
+
ON_DEMAND_MODELS = ["jina", "robertalex", "legal-bert"]
|
| 18 |
+
|
| 19 |
+
@asynccontextmanager
|
| 20 |
+
async def lifespan(app: FastAPI):
|
| 21 |
+
"""Application lifespan handler for startup and shutdown"""
|
| 22 |
+
# Startup - load priority models
|
| 23 |
+
try:
|
| 24 |
+
global models_cache
|
| 25 |
+
print(f"Loading startup models: {STARTUP_MODELS}...")
|
| 26 |
+
models_cache = load_models(STARTUP_MODELS)
|
| 27 |
+
print(f"Startup models loaded successfully: {list(models_cache.keys())}")
|
| 28 |
+
yield
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Failed to load startup models: {str(e)}")
|
| 31 |
+
# Continue anyway - models can be loaded on demand
|
| 32 |
+
yield
|
| 33 |
+
finally:
|
| 34 |
+
# Shutdown - cleanup resources
|
| 35 |
+
cleanup_memory()
|
| 36 |
+
|
| 37 |
+
def ensure_model_loaded(model_name: str):
|
| 38 |
+
"""Load a specific model on demand if not already loaded"""
|
| 39 |
+
global models_cache
|
| 40 |
+
if model_name not in models_cache:
|
| 41 |
+
if model_name in ON_DEMAND_MODELS:
|
| 42 |
+
try:
|
| 43 |
+
print(f"Loading model on demand: {model_name}...")
|
| 44 |
+
new_models = load_models([model_name])
|
| 45 |
+
models_cache.update(new_models)
|
| 46 |
+
print(f"Model {model_name} loaded successfully!")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Failed to load model {model_name}: {str(e)}")
|
| 49 |
+
raise HTTPException(status_code=500, detail=f"Model {model_name} loading failed: {str(e)}")
|
| 50 |
+
else:
|
| 51 |
+
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
|
| 52 |
+
|
| 53 |
+
app = FastAPI(
|
| 54 |
+
title="Multilingual & Legal Embedding API",
|
| 55 |
+
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
| 56 |
+
version="3.0.0",
|
| 57 |
+
lifespan=lifespan
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Add CORS middleware to allow cross-origin requests
|
| 61 |
+
app.add_middleware(
|
| 62 |
+
CORSMiddleware,
|
| 63 |
+
allow_origins=["*"], # In production, specify actual domains
|
| 64 |
+
allow_credentials=True,
|
| 65 |
+
allow_methods=["*"],
|
| 66 |
+
allow_headers=["*"],
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
@app.get("/")
|
| 70 |
+
async def root():
|
| 71 |
+
return {
|
| 72 |
+
"message": "Multilingual & Legal Embedding API",
|
| 73 |
+
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
| 74 |
+
"status": "running",
|
| 75 |
+
"docs": "/docs",
|
| 76 |
+
"total_models": 5
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
@app.post("/embed", response_model=EmbeddingResponse)
|
| 80 |
+
async def create_embeddings(request: EmbeddingRequest):
|
| 81 |
+
"""Generate embeddings for input texts"""
|
| 82 |
+
try:
|
| 83 |
+
# Load specific model on demand if needed
|
| 84 |
+
ensure_model_loaded(request.model)
|
| 85 |
+
|
| 86 |
+
if not request.texts:
|
| 87 |
+
raise HTTPException(status_code=400, detail="No texts provided")
|
| 88 |
+
|
| 89 |
+
if len(request.texts) > 50: # Rate limiting
|
| 90 |
+
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
|
| 91 |
+
|
| 92 |
+
embeddings = get_embeddings(
|
| 93 |
+
request.texts,
|
| 94 |
+
request.model,
|
| 95 |
+
models_cache,
|
| 96 |
+
request.normalize,
|
| 97 |
+
request.max_length
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Cleanup memory after large batches
|
| 101 |
+
if len(request.texts) > 20:
|
| 102 |
+
cleanup_memory()
|
| 103 |
+
|
| 104 |
+
return EmbeddingResponse(
|
| 105 |
+
embeddings=embeddings,
|
| 106 |
+
model_used=request.model,
|
| 107 |
+
dimensions=len(embeddings[0]) if embeddings else 0,
|
| 108 |
+
num_texts=len(request.texts)
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
except ValueError as e:
|
| 112 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 113 |
+
except Exception as e:
|
| 114 |
+
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
|
| 115 |
+
|
| 116 |
+
@app.get("/models", response_model=List[ModelInfo])
|
| 117 |
+
async def list_models():
|
| 118 |
+
"""List available models and their specifications"""
|
| 119 |
+
return [
|
| 120 |
+
ModelInfo(
|
| 121 |
+
model_id="jina",
|
| 122 |
+
name="jinaai/jina-embeddings-v2-base-es",
|
| 123 |
+
dimensions=768,
|
| 124 |
+
max_sequence_length=8192,
|
| 125 |
+
languages=["Spanish", "English"],
|
| 126 |
+
model_type="bilingual",
|
| 127 |
+
description="Bilingual Spanish-English embeddings with long context support"
|
| 128 |
+
),
|
| 129 |
+
ModelInfo(
|
| 130 |
+
model_id="robertalex",
|
| 131 |
+
name="PlanTL-GOB-ES/RoBERTalex",
|
| 132 |
+
dimensions=768,
|
| 133 |
+
max_sequence_length=512,
|
| 134 |
+
languages=["Spanish"],
|
| 135 |
+
model_type="legal domain",
|
| 136 |
+
description="Spanish legal domain specialized embeddings"
|
| 137 |
+
),
|
| 138 |
+
ModelInfo(
|
| 139 |
+
model_id="jina-v3",
|
| 140 |
+
name="jinaai/jina-embeddings-v3",
|
| 141 |
+
dimensions=1024,
|
| 142 |
+
max_sequence_length=8192,
|
| 143 |
+
languages=["Multilingual"],
|
| 144 |
+
model_type="multilingual",
|
| 145 |
+
description="Latest Jina v3 with superior multilingual performance"
|
| 146 |
+
),
|
| 147 |
+
ModelInfo(
|
| 148 |
+
model_id="legal-bert",
|
| 149 |
+
name="nlpaueb/legal-bert-base-uncased",
|
| 150 |
+
dimensions=768,
|
| 151 |
+
max_sequence_length=512,
|
| 152 |
+
languages=["English"],
|
| 153 |
+
model_type="legal domain",
|
| 154 |
+
description="English legal domain BERT model"
|
| 155 |
+
),
|
| 156 |
+
ModelInfo(
|
| 157 |
+
model_id="roberta-ca",
|
| 158 |
+
name="projecte-aina/roberta-large-ca-v2",
|
| 159 |
+
dimensions=1024,
|
| 160 |
+
max_sequence_length=512,
|
| 161 |
+
languages=["Catalan"],
|
| 162 |
+
model_type="general",
|
| 163 |
+
description="Catalan RoBERTa-large model trained on large corpus"
|
| 164 |
+
)
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
+
@app.get("/health")
|
| 168 |
+
async def health_check():
|
| 169 |
+
"""Health check endpoint"""
|
| 170 |
+
startup_models_loaded = all(model in models_cache for model in STARTUP_MODELS)
|
| 171 |
+
all_models_loaded = len(models_cache) == 5
|
| 172 |
+
|
| 173 |
+
return {
|
| 174 |
+
"status": "healthy" if startup_models_loaded else "partial",
|
| 175 |
+
"startup_models_loaded": startup_models_loaded,
|
| 176 |
+
"all_models_loaded": all_models_loaded,
|
| 177 |
+
"available_models": list(models_cache.keys()),
|
| 178 |
+
"startup_models": STARTUP_MODELS,
|
| 179 |
+
"on_demand_models": ON_DEMAND_MODELS,
|
| 180 |
+
"models_count": len(models_cache),
|
| 181 |
+
"note": f"Startup models: {STARTUP_MODELS} | On-demand: {ON_DEMAND_MODELS}"
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
# Set multi-threading for CPU
|
| 186 |
+
torch.set_num_threads(8)
|
| 187 |
+
torch.set_num_interop_threads(1)
|
| 188 |
+
|
| 189 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|