File size: 15,217 Bytes
3924e13
 
 
 
 
 
 
40aaca9
 
 
3924e13
 
 
 
 
 
 
40aaca9
 
 
 
 
 
 
 
 
 
 
 
3924e13
40aaca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aaca9
 
3924e13
 
 
 
 
 
 
 
 
 
 
 
 
 
40aaca9
3924e13
 
40aaca9
3924e13
 
 
 
 
40aaca9
 
 
3924e13
40aaca9
3924e13
 
40aaca9
3924e13
 
 
 
 
40aaca9
 
 
 
 
3924e13
 
 
 
 
 
 
 
 
 
40aaca9
3924e13
 
40aaca9
3924e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aaca9
3924e13
 
 
 
 
 
 
 
 
40aaca9
3924e13
 
40aaca9
 
 
3924e13
 
 
 
40aaca9
3924e13
40aaca9
 
 
 
 
3924e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aaca9
 
 
 
 
 
3924e13
 
 
40aaca9
3924e13
40aaca9
 
 
 
 
3924e13
 
 
 
 
 
 
 
 
ea18dcf
 
 
3924e13
 
 
 
 
 
 
 
 
ea18dcf
 
 
 
3924e13
 
 
 
 
40aaca9
3924e13
 
 
 
 
ea18dcf
 
 
3924e13
 
 
ea18dcf
 
3924e13
ea18dcf
 
40aaca9
3924e13
 
 
 
 
 
40aaca9
3924e13
 
40aaca9
 
3924e13
 
 
40aaca9
 
 
 
 
 
 
 
 
 
 
 
3924e13
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import cv2
import numpy as np
import torch
import gradio as gr
import segmentation_models_pytorch as smp
from PIL import Image
import boto3
import uuid
import io
from glob import glob
from pipeline.ImgOutlier import detect_outliers
from pipeline.normalization import align_images

# 检测是否在Hugging Face环境中运行
HF_SPACE = os.environ.get('SPACE_ID') is not None

# DigitalOcean Spaces上传函数
def upload_mask(image, prefix="mask"):
    """
    将分割掩码图像上传到DigitalOcean Spaces
    
    Args:
        image: PIL Image对象
        prefix: 文件名前缀
        
    Returns:
        上传文件的URL
    """
    try:
        # 从环境变量获取凭据
        do_key = os.environ.get('DO_SPACES_KEY')
        do_secret = os.environ.get('DO_SPACES_SECRET')
        do_region = os.environ.get('DO_SPACES_REGION')
        do_bucket = os.environ.get('DO_SPACES_BUCKET')
        
        # 校验凭据是否存在
        if not all([do_key, do_secret, do_region, do_bucket]):
            return "DigitalOcean凭据未设置"
        
        # 创建S3客户端
        session = boto3.session.Session()
        client = session.client('s3',
                               region_name=do_region,
                               endpoint_url=f'https://{do_region}.digitaloceanspaces.com',
                               aws_access_key_id=do_key,
                               aws_secret_access_key=do_secret)
        
        # 生成唯一文件名
        filename = f"{prefix}_{uuid.uuid4().hex}.png"
        
        # 将图像转换为字节流
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG')
        img_byte_arr.seek(0)
        
        # 上传到Spaces
        client.upload_fileobj(
            img_byte_arr,
            do_bucket,
            filename,
            ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
        )
        
        # 返回公共URL
        url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
        return url
    
    except Exception as e:
        print(f"上传失败: {str(e)}")
        return f"上传错误: {str(e)}"

# Global Configuration
MODEL_PATHS = {
    "Metal Marcy": "models/MM_best_model.pth",
    "Silhouette Jaenette": "models/SJ_best_model.pth"
}

REFERENCE_VECTOR_PATHS = {
    "Metal Marcy": "models/MM_mean.npy",
    "Silhouette Jaenette": "models/SJ_mean.npy"
}

REFERENCE_IMAGE_DIRS = {
    "Metal Marcy": "reference_images/MM",
    "Silhouette Jaenette": "reference_images/SJ"
}

# Category names and color mapping
CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
COLORS = [
    [0, 0, 0],        # background - black
    [139, 137, 137],  # cobbles - dark gray
    [255, 228, 181],  # drysand - light yellow
    [0, 128, 0],      # plant - green
    [135, 206, 235],  # sky - sky blue
    [0, 0, 255],      # water - blue
    [194, 178, 128]   # wetsand - sand brown
]

# Load model function
def load_model(model_path, device="cuda"):
    try:
        # 如果在HF环境中,默认使用CPU
        if HF_SPACE:
            device = "cpu"  # HF Space可能没有GPU
        elif not torch.cuda.is_available():
            device = "cpu"  # 本地环境也可能没有GPU
        
        model = smp.create_model(
            "DeepLabV3Plus",
            encoder_name="efficientnet-b6",
            in_channels=3,
            classes=len(CLASSES),
            encoder_weights=None
        )
        state_dict = torch.load(model_path, map_location=device)
        if all(k.startswith('model.') for k in state_dict.keys()):
            state_dict = {k[6:]: v for k, v in state_dict.items()}
        model.load_state_dict(state_dict)
        model.to(device)
        model.eval()
        print(f"模型加载成功: {model_path}")
        return model
    except Exception as e:
        print(f"模型加载失败: {e}")
        return None

# Load reference vector
def load_reference_vector(vector_path):
    try:
        if not os.path.exists(vector_path):
            print(f"参考向量文件不存在: {vector_path}")
            return []
        ref_vector = np.load(vector_path)
        print(f"参考向量加载成功: {vector_path}")
        return ref_vector
    except Exception as e:
        print(f"参考向量加载失败 {vector_path}: {e}")
        return []

# Load reference image
def load_reference_images(ref_dir):
    try:
        if not os.path.exists(ref_dir):
            print(f"参考图像目录不存在: {ref_dir}")
            os.makedirs(ref_dir, exist_ok=True)
            return []
            
        image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
        image_files = []
        for ext in image_extensions:
            image_files.extend(glob(os.path.join(ref_dir, ext)))
        image_files.sort()
        reference_images = []
        for file in image_files[:4]:
            img = cv2.imread(file)
            if img is not None:
                reference_images.append(img)
        print(f"从 {ref_dir} 加载了 {len(reference_images)} 张图像")
        return reference_images
    except Exception as e:
        print(f"加载图像失败 {ref_dir}: {e}")
        return []

# Preprocess the image
def preprocess_image(image):
    if image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
    orig_h, orig_w = image.shape[:2]
    image_resized = cv2.resize(image, (1024, 1024))
    image_norm = image_resized.astype(np.float32) / 255.0
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image_norm = (image_norm - mean) / std
    image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
    return image_tensor, orig_h, orig_w

# Generate segmentation map and visualization
def generate_segmentation_map(prediction, orig_h, orig_w):
    mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
    mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
    kernel = np.ones((5, 5), np.uint8)
    processed_mask = mask_resized.copy()
    for idx in range(1, len(CLASSES)):
        class_mask = (mask_resized == idx).astype(np.uint8)
        dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
        dilated_effect = dilated_mask & (mask_resized == 0)
        processed_mask[dilated_effect > 0] = idx
    segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
    for idx, color in enumerate(COLORS):
        segmentation_map[processed_mask == idx] = color
    return segmentation_map

# Analysis result HTML
def create_analysis_result(mask):
    total_pixels = mask.size
    percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
                   for i, cls in enumerate(CLASSES)}
    ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
    result = "<div style='font-size:18px;font-weight:bold;'>"
    result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
    result += "</div>"
    return result

# Merge and overlay
def create_overlay(image, segmentation_map, alpha=0.5):
    if image.shape[:2] != segmentation_map.shape[:2]:
        segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
    return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)

# Perform segmentation
def perform_segmentation(model, image_bgr):
    device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
    image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
    image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
    with torch.no_grad():
        prediction = model(image_tensor.to(device))
    seg_map = generate_segmentation_map(prediction, orig_h, orig_w)  # RGB
    overlay = create_overlay(image_rgb, seg_map)
    mask = prediction.argmax(1).squeeze().cpu().numpy()
    analysis = create_analysis_result(mask)
    return seg_map, overlay, analysis

# Single image processing
def process_coastal_image(location, input_image):
    if input_image is None:
        return None, None, "请上传一张图片", "未检测", None
    
    device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
    model = load_model(MODEL_PATHS[location], device)
    
    if model is None:
        return None, None, f"错误:无法加载模型", "未检测", None
    
    ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
    ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
    
    outlier_status = "未检测"
    is_outlier = False
    image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    
    if len(ref_vector) > 0:
        filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
        is_outlier = len(filtered) == 0
    elif len(ref_images) > 0:
        filtered, _ = detect_outliers(ref_images, [image_bgr])
        is_outlier = len(filtered) == 0
    else:
        print("警告:没有参考图像或参考向量可用于异常检测")
        is_outlier = False
    
    outlier_status = "异常检测: <span style='color:red;font-weight:bold'>未通过</span>" if is_outlier else "异常检测: <span style='color:green;font-weight:bold'>通过</span>"
    seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
    
    # 尝试上传到DigitalOcean Spaces
    url = "本地存储"
    try:
        url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
    except Exception as e:
        print(f"上传失败: {e}")
        url = f"上传错误: {str(e)}"
    
    if is_outlier:
        analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>警告:图像未通过异常检测,结果可能不准确!</div>" + analysis
    
    return seg_map, overlay, analysis, outlier_status, url

# Spacial Alignment
def process_with_alignment(location, reference_image, input_image):
    if reference_image is None or input_image is None:
        return None, None, None, None, "请上传参考图像和需要分析的图像", "未处理", None
    
    device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
    model = load_model(MODEL_PATHS[location], device)
    
    if model is None:
        return None, None, None, None, "错误:无法加载模型", "未处理", None
    
    ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
    tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    
    try:
        aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
        aligned_tgt_bgr = aligned[1]
    except Exception as e:
        print(f"空间对齐失败: {e}")
        return None, None, None, None, f"空间对齐失败: {str(e)}", "处理失败", None
    
    seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
    
    # 尝试上传到DigitalOcean Spaces
    url = "本地存储"
    try:
        url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
    except Exception as e:
        print(f"上传失败: {e}")
        url = f"上传错误: {str(e)}"
    
    status = "空间对齐: <span style='color:green;font-weight:bold'>完成</span>"
    ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
    aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
    
    return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url

# Create the Gradio interface
def create_interface():
    # 设置统一的显示尺寸
    disp_w, disp_h = 683, 512  # 统一设置宽高比
    
    with gr.Blocks(title="海岸侵蚀分析系统") as demo:
        gr.Markdown("""# 海岸侵蚀分析系统

上传海岸照片进行分析,包括分割和空间对齐功能。""")
        with gr.Tabs():
            with gr.TabItem("单张图像分割"):
                with gr.Row():
                    loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
                with gr.Row():
                    # 确保所有图像组件使用相同的尺寸
                    inp = gr.Image(label="输入图像", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
                    seg = gr.Image(label="分割图像", type="numpy", height=disp_h, width=disp_w)
                    ovl = gr.Image(label="叠加图像", type="numpy", height=disp_h, width=disp_w)
                with gr.Row():
                    btn1 = gr.Button("执行分割")
                url1 = gr.Text(label="分割图URL")
                status1 = gr.HTML(label="异常检测状态")
                res1 = gr.HTML(label="分析结果")
                btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
            
            with gr.TabItem("空间对齐分割"):
                with gr.Row():
                    loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
                with gr.Row():
                    # 确保所有图像组件使用相同的尺寸
                    ref_img = gr.Image(label="参考图像", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
                    tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
                with gr.Row():
                    btn2 = gr.Button("执行空间对齐分割")
                with gr.Row():
                    orig = gr.Image(label="原始图像", type="numpy", height=disp_h, width=disp_w)
                    aligned = gr.Image(label="对齐后图像", type="numpy", height=disp_h, width=disp_w)
                with gr.Row():
                    seg2 = gr.Image(label="分割图像", type="numpy", height=disp_h, width=disp_w)
                    ovl2 = gr.Image(label="叠加图像", type="numpy", height=disp_h, width=disp_w)
                url2 = gr.Text(label="分割图URL")
                status2 = gr.HTML(label="空间对齐状态")
                res2 = gr.HTML(label="分析结果")
                btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
    return demo

if __name__ == "__main__":
    # 创建必要的目录
    for path in ["models", "reference_images/MM", "reference_images/SJ"]:
        os.makedirs(path, exist_ok=True)
    
    # 检查模型文件是否存在
    for p in MODEL_PATHS.values():
        if not os.path.exists(p):
            print(f"警告:模型文件 {p} 不存在!")
    
    # 检查DigitalOcean凭据是否存在
    do_creds = [
        os.environ.get('DO_SPACES_KEY'),
        os.environ.get('DO_SPACES_SECRET'),
        os.environ.get('DO_SPACES_REGION'),
        os.environ.get('DO_SPACES_BUCKET')
    ]
    if not all(do_creds):
        print("警告:DigitalOcean Spaces凭据不完整,上传功能可能不可用")
    
    # 创建并启动界面
    demo = create_interface()
    # 在HF环境中使用适当的启动配置
    if HF_SPACE:
        demo.launch()
    else:
        demo.launch(share=True)