VedantJhunthra commited on
Commit
a161035
·
verified ·
1 Parent(s): ae3e01f

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +59 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import BertTokenizerFast, BertForTokenClassification
4
+
5
+ # Load Model and Tokenizer
6
+ device = "cuda" if torch.cuda.is_available() else "cpu"
7
+ model_name = "AventIQ-AI/bert-named-entity-recognition"
8
+ model = BertForTokenClassification.from_pretrained(model_name).to(device)
9
+ tokenizer = BertTokenizerFast.from_pretrained(model_name)
10
+
11
+ # Label List
12
+ label_list = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC"]
13
+
14
+ def predict_entities(text):
15
+ tokens = tokenizer(text, return_tensors="pt", truncation=True)
16
+ tokens = {key: val.to(device) for key, val in tokens.items()} # Move to CUDA
17
+
18
+ with torch.no_grad():
19
+ outputs = model(**tokens)
20
+
21
+ logits = outputs.logits # Extract logits
22
+ predictions = torch.argmax(logits, dim=2) # Get highest probability labels
23
+
24
+ tokens_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
25
+ predicted_labels = [label_list[pred] for pred in predictions[0].cpu().numpy()]
26
+
27
+ final_tokens = []
28
+ final_labels = []
29
+ for token, label in zip(tokens_list, predicted_labels):
30
+ if token.startswith("##"):
31
+ final_tokens[-1] += token[2:] # Merge subword
32
+ else:
33
+ final_tokens.append(token)
34
+ final_labels.append(label)
35
+
36
+ table_rows = []
37
+ highlighted_text = text
38
+ for token, label in zip(final_tokens, final_labels):
39
+ if token not in ["[CLS]", "[SEP]", "O"]:
40
+ table_rows.append(f"<tr><td>{token}</td><td>{label}</td></tr>")
41
+ highlighted_text = highlighted_text.replace(token, f"<mark>{token}</mark>", 1)
42
+
43
+ table_data = "<table border='1' style='width:100%;'><tr><th>Entity</th><th>Label</th></tr>" + "".join(table_rows) + "</table>"
44
+
45
+ return f"<div style='font-size:16px; padding:10px;'><b>Highlighted Text:</b><br>{highlighted_text}<br><br><b>Entities Table:</b><br>{table_data}</div>"
46
+
47
+ # Create Gradio Interface
48
+ iface = gr.Interface(
49
+ fn=predict_entities,
50
+ inputs=gr.Textbox(lines=5, placeholder="Enter text for entity recognition..."),
51
+ outputs=gr.HTML(),
52
+ title="BERT Named Entity Recognition",
53
+ description="Identify named entities (e.g., names, locations, organizations) in text using the BERT model fine-tuned by AventIQ. The results are displayed with highlighted entities and a structured table.",
54
+ live=True
55
+ )
56
+
57
+ # Launch the app
58
+ if __name__ == "__main__":
59
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ sentencepiece
4
+ gradio