import gradio as gr from transformers import pipeline # Load the summarization model summarizer = pipeline("summarization", model="AventIQ-AI/t5-text-summarizer") # Define the summarization function def summarize_text(input_text): summary = summarizer(input_text, max_length=150, min_length=30, do_sample=False) return summary[0]['summary_text'] # Create the Gradio UI iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=5, placeholder="Enter text to summarize..."), outputs="text", title="T5 Text Summarizer", description="Enter a passage, and the T5 model will generate a concise summary." ) # Launch the app iface.launch()