import gradio as gr import torch from transformers import BertTokenizer, BertForSequenceClassification # Load model and tokenizer model_name = "AventIQ-AI/bert-talentmatchai" tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() # Label mapping label_mapping = {0: "No Fit", 1: "Low Fit", 2: "Potential Fit", 3: "Good Fit"} def preprocess_text(text, max_length=256): """Truncate input text to avoid exceeding model limits.""" return " ".join(text.split()[:max_length]) def talent_match(resume, job_description): resume = preprocess_text(resume) job_description = preprocess_text(job_description) input_text = f"Resume: {resume} Job Description: {job_description}" inputs = tokenizer([input_text], padding="max_length", truncation=True, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) prediction = outputs.logits.argmax(dim=1).item() return label_mapping[prediction] iface = gr.Interface( fn=talent_match, inputs=[ gr.Textbox(label="📄 Resume", placeholder="Paste the candidate's resume here...", lines=5), gr.Textbox(label="📌 Job Description", placeholder="Paste the job description here...", lines=5) ], outputs=gr.Textbox(label="✅ Match Result"), title="🤖 AI-Powered Talent Matching System", description="🔍 Enter a candidate's resume and a job description to check if they are a good match using AI.", theme="compact", allow_flagging="never", examples=[ ["Experienced Python developer skilled in machine learning and data science.", "Looking for a Python developer with ML experience."], ["Project manager with 5 years in Agile methodologies.", "Seeking a Scrum Master with Agile experience."] ], ) if __name__ == "__main__": iface.launch()