import gradio as gr from transformers import pipeline # Load the GPT-2 next-line prediction model model_name = "AventIQ-AI/gpt2-lmheadmodel-next-line-prediction-model" generator = pipeline("text-generation", model=model_name) def generate_next_line(prompt): """Generates the next line of text based on the input prompt.""" if not prompt.strip(): return "⚠️ Please enter a prompt." response = generator(prompt, max_length=len(prompt.split()) + 10, num_return_sequences=1) return response[0]["generated_text"] # Example Inputs example_prompts = [ "Once upon a time, a young explorer discovered", "The AI revolutionized the way people interacted with", "In the distant future, humans and robots lived together in", "The detective examined the crime scene and found a" ] # Create Gradio UI with gr.Blocks() as demo: gr.Markdown("## 📝 Next-Line Prediction with GPT-2") gr.Markdown("Enter a sentence, and the model will predict the next line!") with gr.Row(): input_text = gr.Textbox(label="✍️ Enter your text:", placeholder="Once upon a time...") generate_button = gr.Button("🔮 Generate Next Line") output_text = gr.Textbox(label="📜 Generated Text:") gr.Markdown("### ✨ Example Inputs") example_buttons = [gr.Button(example) for example in example_prompts] for btn in example_buttons: btn.click(fn=lambda text=btn.value: text, outputs=input_text) generate_button.click(generate_next_line, inputs=input_text, outputs=output_text) # Launch the Gradio app demo.launch()