File size: 1,009 Bytes
e0abf46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import pipeline
# Load the Whisper model
model_name = "AventIQ-AI/whisper_small_Automatic_speech_recognition"
asr_pipeline = pipeline("automatic-speech-recognition", model=model_name)
def transcribe_audio(audio):
if audio is None:
return "β οΈ Please upload or record an audio file."
transcript = asr_pipeline(audio)["text"]
return transcript if transcript else "β οΈ No speech detected."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π€ Whisper Small - Speech to Text")
gr.Markdown("Upload an audio file or record your voice to get a transcript.")
audio_input = gr.Audio(type="filepath", interactive=True, label="ποΈ Upload or Record Audio")
transcribe_button = gr.Button("π Transcribe")
output_text = gr.Textbox(label="π Transcription Output")
transcribe_button.click(transcribe_audio, inputs=audio_input, outputs=output_text)
# Launch the app
demo.launch() |