import gradio as gr from transformers import pipeline # Load Whisper model model_name = "AventIQ-AI/whisper-speech-text" stt_pipeline = pipeline("automatic-speech-recognition", model=model_name) def transcribe(audio_path): """Transcribe speech to text using Whisper.""" if audio_path is None: return "⚠️ Please upload or record an audio file." try: # Pass the file path directly to the Whisper pipeline result = stt_pipeline(audio_path) return f"📝 **Transcription:**\n{result['text']}" except Exception as e: return f"❌ Error processing audio: {str(e)}" # Create Enhanced Gradio Interface with gr.Blocks(theme="default") as demo: gr.Markdown( """ # 🎤 **Whisper Speech-to-Text** **Upload or record an audio file** and this tool will convert your speech into text using **AventIQ-AI Whisper Model**. Supports **MP3, WAV, FLAC** formats. """ ) with gr.Row(): audio_input = gr.Audio(type="filepath", label="🎙️ Upload or Record Your Voice") transcribed_text = gr.Textbox(label="📝 Transcription", interactive=False) submit_btn = gr.Button("🎧 Transcribe", variant="primary") submit_btn.click(transcribe, inputs=audio_input, outputs=transcribed_text) # Launch the app if __name__ == "__main__": demo.launch()