BN / app.py
Avinash109's picture
Update app.py
8448555 verified
raw
history blame
5.49 kB
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import gradio as gr
import os
# Define the Dataset class
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.target_cols = target_cols
def __len__(self):
return max(0, len(self.data) - self.seq_len + 1)
def __getitem__(self, idx):
seq_data = self.data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
# Define the LSTM model
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout=0.1):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
out = self.fc(lstm_out[:, -1, :])
return out
# Function to train the model
def train_model(model, train_loader, val_loader, num_epochs=10):
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
model.train()
for features, labels in train_loader:
optimizer.zero_grad()
outputs = model(features)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
val_loss = 0
with torch.no_grad():
for features, labels in val_loader:
outputs = model(features)
val_loss += criterion(outputs, labels).item()
val_loss /= len(val_loader)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
# Function to generate trading signals
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
signals = []
for pred, actual in zip(predictions, actual_values):
if pred > actual * (1 + stop_loss_threshold):
signals.append("Buy CE")
elif pred < actual * (1 - stop_loss_threshold):
signals.append("Buy PE")
else:
signals.append("Hold")
return signals
# Function to generate a report
def generate_report(predictions, actual_values, signals):
report = []
cumulative_profit = 0
for i in range(len(signals)):
signal = signals[i]
profit = actual_values[i] - predictions[i]
if signal == "Buy CE":
cumulative_profit += profit
elif signal == "Buy PE":
cumulative_profit -= profit
report.append(f"Signal: {signal}, Actual: {actual_values[i]:.2f}, Predicted: {predictions[i]:.2f}, Profit: {profit:.2f}")
total_profit = cumulative_profit
report.append(f"Total Profit: {total_profit:.2f}")
return "\n".join(report)
# Function to process data and make predictions
def predict():
# Load the pre-existing CSV file
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
if not os.path.exists(csv_path):
return "Error: CSV file not found in the expected location."
# Load and preprocess data
data = pd.read_csv(csv_path)
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
# Split data
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
# Create datasets and dataloaders
seq_len = 20
target_cols = ['close']
train_dataset = BankNiftyDataset(train_data, seq_len, target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, target_cols)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Initialize and train the model
input_dim = 6
hidden_dim = 64
output_dim = len(target_cols)
model = LSTMModel(input_dim, hidden_dim, output_dim)
train_model(model, train_loader, val_loader)
# Make predictions
model.eval()
predictions = []
actual_values = val_data['close'].values[seq_len-1:]
with torch.no_grad():
for i in range(len(val_dataset)):
features, _ = val_dataset[i]
pred = model(features.unsqueeze(0)).item()
predictions.append(pred)
# Generate signals and report
signals = generate_signals(predictions, actual_values)
report = generate_report(predictions, actual_values, signals)
return report
# Set up the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=None,
outputs=gr.Textbox(label="Prediction Report"),
title="BankNifty Option Chain Predictor",
description="Click 'Submit' to generate predictions and trading signals based on the pre-loaded BankNifty option chain data."
)
# Launch the app
iface.launch()