Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import torch.optim as optim
|
@@ -8,69 +9,92 @@ from sklearn.preprocessing import StandardScaler
|
|
8 |
import joblib
|
9 |
import gradio as gr
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
|
14 |
-
|
15 |
-
# Preprocess the data
|
16 |
scaler = StandardScaler()
|
17 |
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
18 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
19 |
-
|
20 |
-
# Save the scaler for later use
|
21 |
joblib.dump(scaler, 'scaler.gz')
|
22 |
|
23 |
-
# Create a custom dataset class
|
24 |
class BankNiftyDataset(Dataset):
|
25 |
-
def __init__(self, data, seq_len):
|
26 |
self.data = data
|
27 |
self.seq_len = seq_len
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def __len__(self):
|
30 |
-
return len(self.
|
31 |
|
32 |
def __getitem__(self, idx):
|
33 |
-
seq_data = self.
|
34 |
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
|
35 |
-
label = torch.tensor(seq_data[
|
36 |
return features, label
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
self.
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def forward(self, x):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
return out
|
52 |
|
53 |
-
|
54 |
-
input_dim = 6
|
55 |
-
hidden_dim =
|
56 |
-
output_dim =
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
def train_model():
|
74 |
model.train()
|
75 |
for batch in train_loader:
|
76 |
features, label = batch
|
@@ -80,8 +104,7 @@ def train_model():
|
|
80 |
loss.backward()
|
81 |
optimizer.step()
|
82 |
|
83 |
-
|
84 |
-
def evaluate_model():
|
85 |
model.eval()
|
86 |
total_loss = 0
|
87 |
with torch.no_grad():
|
@@ -92,65 +115,120 @@ def evaluate_model():
|
|
92 |
total_loss += loss.item()
|
93 |
return total_loss / len(val_loader)
|
94 |
|
95 |
-
|
96 |
-
def generate_strategy(open_price, high_price, low_price, close_price, volume, oi, sma_20, sma_50, rsi):
|
97 |
model.eval()
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
with torch.no_grad():
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
|
106 |
-
# Retrain the model every week or month (depending on schedule)
|
107 |
def retrain_model():
|
108 |
-
# Load fresh data, scale it, and retrain the model
|
109 |
new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
|
110 |
new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
111 |
new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data
|
112 |
|
113 |
new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
|
114 |
-
new_train_dataset = BankNiftyDataset(new_train_data, seq_len)
|
115 |
-
new_val_dataset = BankNiftyDataset(new_val_data, seq_len)
|
116 |
|
117 |
new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
|
118 |
new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)
|
119 |
|
120 |
-
|
121 |
-
model
|
122 |
-
|
123 |
-
for batch in new_train_loader:
|
124 |
-
features, label = batch
|
125 |
-
optimizer.zero_grad()
|
126 |
-
output = model(features)
|
127 |
-
loss = criterion(output, label)
|
128 |
-
loss.backward()
|
129 |
-
optimizer.step()
|
130 |
|
131 |
-
# Save the retrained model
|
132 |
torch.save(model.state_dict(), 'retrained_model.pth')
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# Scheduler for automatic retraining
|
135 |
scheduler = BackgroundScheduler()
|
136 |
-
scheduler.add_job(retrain_model, 'interval',
|
137 |
scheduler.start()
|
138 |
|
139 |
# Gradio interface
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# Launch Gradio interface
|
155 |
-
gr.Interface(fn=generate_strategy, inputs=inputs, outputs=outputs, title="BankNifty Strategy Generator").launch()
|
156 |
-
|
|
|
1 |
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.optim as optim
|
|
|
9 |
import joblib
|
10 |
import gradio as gr
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
13 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
14 |
+
import optuna
|
15 |
+
from sklearn.metrics import mean_squared_error
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
|
19 |
+
# Load and preprocess data
|
20 |
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
|
|
|
|
|
21 |
scaler = StandardScaler()
|
22 |
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
23 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
|
|
|
|
24 |
joblib.dump(scaler, 'scaler.gz')
|
25 |
|
|
|
26 |
class BankNiftyDataset(Dataset):
|
27 |
+
def __init__(self, data, seq_len, expiry_type, target_cols=['close']):
|
28 |
self.data = data
|
29 |
self.seq_len = seq_len
|
30 |
+
self.expiry_type = expiry_type
|
31 |
+
self.target_cols = target_cols
|
32 |
+
|
33 |
+
if self.expiry_type == "weekly":
|
34 |
+
self.filtered_data = data[data['Expiry'].str.contains("W")]
|
35 |
+
elif self.expiry_type == "monthly":
|
36 |
+
self.filtered_data = data[~data['Expiry'].str.contains("W")]
|
37 |
|
38 |
def __len__(self):
|
39 |
+
return len(self.filtered_data) - self.seq_len
|
40 |
|
41 |
def __getitem__(self, idx):
|
42 |
+
seq_data = self.filtered_data.iloc[idx:idx+self.seq_len]
|
43 |
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
|
44 |
+
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
|
45 |
return features, label
|
46 |
|
47 |
+
class AdvancedModel(nn.Module):
|
48 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, nhead=4, dropout=0.1):
|
49 |
+
super(AdvancedModel, self).__init__()
|
50 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
|
51 |
+
self.gru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
|
52 |
+
|
53 |
+
encoder_layers = TransformerEncoderLayer(d_model=input_dim, nhead=nhead, dim_feedforward=hidden_dim, dropout=dropout)
|
54 |
+
self.transformer = TransformerEncoder(encoder_layers, num_layers=num_layers)
|
55 |
+
|
56 |
+
self.attention = nn.MultiheadAttention(hidden_dim, num_heads=nhead, dropout=dropout)
|
57 |
+
|
58 |
+
self.fc = nn.Sequential(
|
59 |
+
nn.Linear(hidden_dim * 3, hidden_dim),
|
60 |
+
nn.ReLU(),
|
61 |
+
nn.Dropout(dropout),
|
62 |
+
nn.Linear(hidden_dim, output_dim)
|
63 |
+
)
|
64 |
|
65 |
def forward(self, x):
|
66 |
+
lstm_out, _ = self.lstm(x)
|
67 |
+
gru_out, _ = self.gru(x)
|
68 |
+
transformer_out = self.transformer(x.transpose(0, 1)).transpose(0, 1)
|
69 |
+
|
70 |
+
combined = torch.cat((lstm_out[:, -1, :], gru_out[:, -1, :], transformer_out[:, -1, :]), dim=1)
|
71 |
+
|
72 |
+
out = self.fc(combined)
|
73 |
return out
|
74 |
|
75 |
+
def objective(trial):
|
76 |
+
input_dim = 6
|
77 |
+
hidden_dim = trial.suggest_int("hidden_dim", 64, 256)
|
78 |
+
output_dim = len(target_cols)
|
79 |
+
num_layers = trial.suggest_int("num_layers", 1, 4)
|
80 |
+
nhead = trial.suggest_int("nhead", 2, 8)
|
81 |
+
dropout = trial.suggest_float("dropout", 0.1, 0.5)
|
82 |
+
lr = trial.suggest_loguniform("lr", 1e-5, 1e-2)
|
83 |
+
|
84 |
+
model = AdvancedModel(input_dim, hidden_dim, output_dim, num_layers, nhead, dropout)
|
85 |
+
optimizer = optim.Adam(model.parameters(), lr=lr)
|
86 |
+
criterion = nn.MSELoss()
|
87 |
+
|
88 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
89 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
90 |
+
|
91 |
+
for epoch in range(10): # Reduced epochs for faster optimization
|
92 |
+
train_model(model, optimizer, criterion, train_loader)
|
93 |
+
val_loss = evaluate_model(model, criterion, val_loader)
|
94 |
+
|
95 |
+
return val_loss
|
96 |
|
97 |
+
def train_model(model, optimizer, criterion, train_loader):
|
|
|
98 |
model.train()
|
99 |
for batch in train_loader:
|
100 |
features, label = batch
|
|
|
104 |
loss.backward()
|
105 |
optimizer.step()
|
106 |
|
107 |
+
def evaluate_model(model, criterion, val_loader):
|
|
|
108 |
model.eval()
|
109 |
total_loss = 0
|
110 |
with torch.no_grad():
|
|
|
115 |
total_loss += loss.item()
|
116 |
return total_loss / len(val_loader)
|
117 |
|
118 |
+
def generate_strategy(model, expiry_type):
|
|
|
119 |
model.eval()
|
120 |
+
dataset = BankNiftyDataset(data, seq_len, expiry_type, target_cols)
|
121 |
+
loader = DataLoader(dataset, batch_size=1, shuffle=False)
|
122 |
+
|
123 |
with torch.no_grad():
|
124 |
+
predictions = []
|
125 |
+
for features, _ in loader:
|
126 |
+
output = model(features)
|
127 |
+
predictions.append(output.squeeze().tolist())
|
128 |
+
return predictions
|
129 |
|
|
|
130 |
def retrain_model():
|
|
|
131 |
new_data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
|
132 |
new_scaled_data = scaler.transform(new_data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
133 |
new_data[['open', 'high', 'low', 'close', 'volume', 'oi']] = new_scaled_data
|
134 |
|
135 |
new_train_data, new_val_data = train_test_split(new_data, test_size=0.2, random_state=42)
|
136 |
+
new_train_dataset = BankNiftyDataset(new_train_data, seq_len, "weekly", target_cols)
|
137 |
+
new_val_dataset = BankNiftyDataset(new_val_data, seq_len, "weekly", target_cols)
|
138 |
|
139 |
new_train_loader = DataLoader(new_train_dataset, batch_size=32, shuffle=True)
|
140 |
new_val_loader = DataLoader(new_val_dataset, batch_size=32, shuffle=False)
|
141 |
|
142 |
+
train_model(model, optimizer, criterion, new_train_loader)
|
143 |
+
val_loss = evaluate_model(model, criterion, new_val_loader)
|
144 |
+
print(f'Validation Loss after retraining: {val_loss:.4f}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
146 |
torch.save(model.state_dict(), 'retrained_model.pth')
|
147 |
|
148 |
+
def plot_predictions(predictions, actual_values, title):
|
149 |
+
plt.figure(figsize=(12, 6))
|
150 |
+
plt.plot(predictions, label='Predictions')
|
151 |
+
plt.plot(actual_values, label='Actual Values')
|
152 |
+
plt.title(title)
|
153 |
+
plt.xlabel('Time')
|
154 |
+
plt.ylabel('Value')
|
155 |
+
plt.legend()
|
156 |
+
return plt
|
157 |
+
|
158 |
+
def display_strategies():
|
159 |
+
weekly_predictions = generate_strategy(model, "weekly")
|
160 |
+
monthly_predictions = generate_strategy(model, "monthly")
|
161 |
+
|
162 |
+
weekly_actual = data[data['Expiry'].str.contains("W")][target_cols].values[-len(weekly_predictions):]
|
163 |
+
monthly_actual = data[~data['Expiry'].str.contains("W")][target_cols].values[-len(monthly_predictions):]
|
164 |
+
|
165 |
+
weekly_plot = plot_predictions(weekly_predictions, weekly_actual, "Weekly Expiry Predictions vs Actual")
|
166 |
+
monthly_plot = plot_predictions(monthly_predictions, monthly_actual, "Monthly Expiry Predictions vs Actual")
|
167 |
+
|
168 |
+
weekly_mse = mean_squared_error(weekly_actual, weekly_predictions)
|
169 |
+
monthly_mse = mean_squared_error(monthly_actual, monthly_predictions)
|
170 |
+
|
171 |
+
return (
|
172 |
+
f"Weekly Expiry Strategy Predictions (MSE: {weekly_mse:.4f}):\n{weekly_predictions}\n\n"
|
173 |
+
f"Monthly Expiry Strategy Predictions (MSE: {monthly_mse:.4f}):\n{monthly_predictions}",
|
174 |
+
weekly_plot,
|
175 |
+
monthly_plot
|
176 |
+
)
|
177 |
+
|
178 |
+
# Hyperparameter optimization
|
179 |
+
target_cols = ['close', 'volume', 'oi'] # Predicting multiple targets
|
180 |
+
seq_len = 20 # Increased sequence length
|
181 |
+
|
182 |
+
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
|
183 |
+
train_dataset = BankNiftyDataset(train_data, seq_len, "weekly", target_cols)
|
184 |
+
val_dataset = BankNiftyDataset(val_data, seq_len, "weekly", target_cols)
|
185 |
+
|
186 |
+
study = optuna.create_study(direction="minimize")
|
187 |
+
study.optimize(objective, n_trials=50)
|
188 |
+
|
189 |
+
best_params = study.best_params
|
190 |
+
print("Best hyperparameters:", best_params)
|
191 |
+
|
192 |
+
# Initialize the model with best parameters
|
193 |
+
input_dim = 6
|
194 |
+
output_dim = len(target_cols)
|
195 |
+
model = AdvancedModel(input_dim, best_params['hidden_dim'], output_dim, best_params['num_layers'], best_params['nhead'], best_params['dropout'])
|
196 |
+
optimizer = optim.Adam(model.parameters(), lr=best_params['lr'])
|
197 |
+
criterion = nn.MSELoss()
|
198 |
+
|
199 |
+
# Learning rate scheduler
|
200 |
+
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
|
201 |
+
|
202 |
+
# Training loop
|
203 |
+
num_epochs = 100
|
204 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
205 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
206 |
+
|
207 |
+
for epoch in range(num_epochs):
|
208 |
+
train_model(model, optimizer, criterion, train_loader)
|
209 |
+
val_loss = evaluate_model(model, criterion, val_loader)
|
210 |
+
scheduler.step(val_loss)
|
211 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
|
212 |
+
|
213 |
+
# Save the final model
|
214 |
+
torch.save(model.state_dict(), 'final_model.pth')
|
215 |
+
|
216 |
# Scheduler for automatic retraining
|
217 |
scheduler = BackgroundScheduler()
|
218 |
+
scheduler.add_job(retrain_model, 'interval', hours=1)
|
219 |
scheduler.start()
|
220 |
|
221 |
# Gradio interface
|
222 |
+
iface = gr.Interface(
|
223 |
+
fn=display_strategies,
|
224 |
+
inputs=None,
|
225 |
+
outputs=[
|
226 |
+
gr.Textbox(label="Strategy Predictions"),
|
227 |
+
gr.Plot(label="Weekly Expiry Predictions"),
|
228 |
+
gr.Plot(label="Monthly Expiry Predictions")
|
229 |
+
],
|
230 |
+
title="Advanced BankNifty Option Chain Strategy Generator",
|
231 |
+
description="This model predicts close price, volume, and open interest for weekly and monthly expiries."
|
232 |
+
)
|
233 |
+
|
234 |
+
iface.launch()
|
|
|
|
|
|
|
|